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Josua Oscar Aponte Serrano 

Multicellular Multiscale Spatial Modeling Of The Immune Response To Pathogens And Cancer 

 

Mathematical and computational models are essential for investigating the complex interactions 

of the immune response to diseases. Multiscale and multicellular spatial models can provide 

insight into the mechanisms leading to the observed differences in clinical outcomes. We present 

various methodologies and models to address some of this complexity. First, a multiscale 

framework is proposed to investigate the dynamics of primary viral infection and immune 

response. Variation over key model parameters show the distinct patterns of viral dynamics 

observed experimentally. Second, a multiscale model coupling intracellular signaling pathways 

and cell-cell interactions is proposed to investigate the dependency of viral growth on the 

strength of the innate intracellular response to infections via production of inhibitory signaling 

molecules. The viral growth pattern is shown to qualitatively reproduce the growth rates of viral 

plaques in vitro. Third, we propose a model of the regulation of the inflammatory response to 

tumors to investigate the relation between the metabolic profile of individual cancer cells and 

tumor progression. The model is compared and calibrated against clinical data from T1 invasive 

ductal carcinoma patients. Finally, we propose a research workflow for integrating ordinary 

differential equation models and spatial multiscale multicellular models that leverage the 

advantages of both modeling methodologies to study progression of diseases. We applied this 

workflow to investigate the dynamics of the interactions between RSV and HMPV viruses when 

co-infecting the same tissues. 
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Systems Biology and Immunology: Concepts, Methods and Tools 

Systems Biology and Immunology 

The role of the immune system is both to eliminate pathogens and to maintain physiological 

homeostasis when disrupted. The multiple components and interactions of the immune system 

constitute a complex network of feedback mechanisms that ensure its timely activation and 

inhibition leading to the elimination of physiological insults while avoiding massive physiological 

damage [1]. The networks are composed of different types of immune cells and biological 

molecules that facilitate communication between cells. These networks span multiple 

spatiotemporal scales: from microsecond and nanometers (at the molecular level) to days and 

several meters (at the whole organism level). Improper regulation of the immune response can 

lead to failures to contain pathogens, inadequate responses to malingant cells and autoimmune 

diseases [2]. Characterizing and understanding the interactions between the different 

components of the immune system is an urgent yet challenging task.  

Epithelial cells constitute barriers between different physiological compartments and the 

external environment [3]. These cells are the first line of defense against invasive pathogens, such 

as viruses and bacteria, but can themselves become cancerous threats. A pathogen is an 

infectious agent that can lead to either acute or chronic infection in a host. Examples of 

pathogens that cause acute infections are respiratory viruses (Influenza, SARS) and certain types 

of hepatitis viruses. Examples of pathogens that lead to chronic infections are human 

immunodeficiency virus (HIV) and certain bacteria such as Mycobacterium tuberculosis, the 

causing of agent of Tuberculosis (TB) [4].  
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The immune system can be broadly divided into two arms: the innate and the adaptive immune 

response. The innate immune response is the body’s initial response against physiological insults. 

The innate response is non-specific and short-lived. Resident macrophages are a type of innate 

immune cell that live permanently in tissues and are constantly surveilling against threats. When 

threats are detected, macrophages initiate the inflammatory immune response by alerting 

neutrophils and other types of circulating lymphocytes [3]. As part of this initial response, both 

epithelial cells and macrophages secrete a variety of proinflammatory cytokines and chemokines 

such as interleukins (IL-8), interferons (IFNa) and tumor necrosis factors (TNFa). Type I interferons 

are signaling molecules produced by virally infected cells. Downstream activation of the 

interferon autocrine and paracrine signaling pathways lead to upregulation of interferon 

stimulated genes and induction of an antiviral state in epithelial cells. These cytokines play an 

important role in recruiting immune cells to the inflammation site. Inflammation also increases 

the flux of antigen presenting cells (APCs) that are responsible for initiating the adaptative 

immune response.  

The adaptive immune response is initiated in lymphatic tissue by a type of APC called dendritic 

cells (DCs). DCs phagocytose pathogenic cells and debris at the site of inflammation and undergo 

a maturation process that induce antigen presentation on major histocompatibility complexes 

(MHC) [5]. Mature DCs migrate to nearby lymph nodes via the vessels of the lymphatic system. 

Recognition of antigens by Naïve T cells leads to activation of intracellular signaling cascades 

resulting in rapid proliferation and differentiation. Mature T cells can either migrate to the 

inflammation site or serve helper function for B cells [5]. At the inflammation site, cytotoxic T 

cells induce apoptosis on target cells and secrete cytokines to further increase the adaptive 
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immune response. B cell activation results in antibody production and creates memory of 

pathogen exposure. The immune response is resolved by the secretion of anti-inflammatory 

cytokines (IL-4, IL-6, IL-11) by certain immunoregulatory cells (such as macrophages and 

regulatory T cells) and apoptosis of infected/malignant cells [3]. Figure 1 provides a schematic 

representation of the components and interactions of the immune system.  

 

Figure 1.1. Key Components and Interactions of the Innate and Adaptive Immune System. Schematic 

representation of some of the components and interactions of the immune system that are recurrent 

modeling targets in the following projects. Infected and malignant epithelial cells initiate the innate 

immune response by activating the resident macrophage population. Macrophages secrete signaling 

molecules known as cytokines and recruit circulating lymphocytes (such as neutrophiles) and antigen 

presenting cells (such as dendritic cells). Dendritic cells travel to nearby lymphatic sites where they initiate 

maturation of T cells. Cytotoxic T cells travel back to the inflammation site where they kill cells by 
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recognizing antigens. Helper T cells initiate B cell maturation leading to production of antibodies. 

Immunoregulatory cells and molecules resolve the immune response. Adapted from [6]. 

Novel experimental techniques have helped expand our understanding of the components and 

interactions of the immune system. Technologies such as flow cytometry, mass spectrometry and 

mass cytometry enable characterization of multiple immunoregulating proteins.  Single cell RNA 

sequencing (scRNA-seq) enables discovery of immune cell types and identification of genetic 

markers and therapeutic targets [1]. New microscopy techniques such as fluorescence in situ 

hybridization (smFISH) allow to collect new spatiotemporal information regarding immune cell 

activity which was difficult to collect before. Combinations of these techniques greatly augment 

the type of information investigators have access to. For example, some groups have combined 

mass spectrometry and flow cytometry to identify antibodies per cell type. Other groups have 

combined smFISH and sc-RNAseq to identify cell phenotypes in mouse liver cells.  

Despite the wealth of information produced by these experimental techniques, important 

questions remain. How can this information be used to develop a dynamic understanding of the 

interactions between the different components of the immune system? How can variations in 

the immune response between individuals be explained mechanistically? How can individual 

components be targeted to improve the immune response and the overall human health? [1] 

Addressing these pressing questions in the face of the large number of components and non-

linear interactions of the immune system requires synthesizing the wealth of information into 

simple mechanistic explanations. Data cannot be additively added to reconstruct the dynamics 

of such a complex system [7]. Mathematical and computational models can aid in accomplishing 

such task.  
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Systems biology, and systems immunology in specific, provides a framework to organize and 

quantitatively characterize the key interactions of the immune response. The goal of such 

approach is to produce representative models that can be used to generate and test mechanistic 

hypotheses about the immune system [7]. Experimentally guided mathematical and 

computational models describe how the components and interactions of the immune system 

change in time, and in response to external perturbations, often in non-linear forms. The 

computational implementation of mathematical models allows for the evaluation of multiple 

mechanistic hypothesis while reducing complex analytical methods and expensive/time-

consuming experiments [8]. 

Integrating data across different temporal and spatial scales is another challenge that systems 

immunology can help overcome. Mechanistic hypotheses that integrate multi-cellular signaling 

and interactions at tissue level are the most challenging to generate and experimentally validate 

[2]. Multiscale modeling approaches integrate hypotheses about mechanism interacting at 

different spatiotemporal scales. These models often include large numbers of parameters and 

big uncertainties about the meaning or value of such parameters. Despite of this uncertainty, 

multiscale models can be inquired about their predicted behaviors when exploring different 

ranges of their parameters [2]. These parameters explorations often show qualitatively different 

behaviors when parameters are altered and demarcate the regions of the parameter space that 

correspond to biologically realistic parameter ranges. This type of sensitivity analysis can also 

help distinguishing critical and noncritical parameters, suggesting key and redundant interactions 

as well as possible therapeutic targets [9].  
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Quantitative Modeling Approaches 

Over the recent years, and as systems biology have become an established research paradigm, 

multiple quantitative approaches have been developed to address some of the issues discussed 

above. These approaches can be grouped in three general categories. 1) Statistical methods that 

identify patterns in the data by incorporating the least possible number of assumptions. 

Statistical methods include machine learning algorithms [10]. 2) Non-spatial mathematical 

methods that model the dynamics of biological systems by incorporating mechanistic hypothesis 

but rely on mean-field approximations [10]. 3) Spatiotemporal methods that also include 

mechanistic hypothesis but also incorporate spatial information. In some case, spatiotemporal 

models can also include information about each individual component of the complex system.  

Statistical methods and machine learning algorithms produce data models as mathematical 

abstractions of the underlying patters in the data. These models can be predictive if the data 

used to train the models is sound but are rarely explanatory since they do not incorporate 

mechanistic hypotheses. These techniques are predominantly used in bioinformatics and 

biostatistics to identify gene expression patterns in cell populations. Regression models find the 

values of the parameters of a given mathematical function that better fits time-series data. 

Hidden Markov models are used to explain correlations in the data by assuming that the 

underlying mechanisms drive the dynamics of the system are ‘unknown’ but indicators can be 

observed [10]. Multivariate techniques can be used to build statistical models that include spatial 

information by correlating spatiotemporal data.  

Non-spatial dynamical models use mathematical formalisms to explain the data by expressing 

mechanistic hypothesis about the target biological system. The key difference between statistical 
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and dynamical models is that the explanatory and predictive capabilities of the latter depend on 

the soundness of the hypotheses and assumptions incorporated into them. Rule-based modeling 

uses semantical and notional rules to represent chemical interactions between molecular species 

[8]. BioNetGen is an example of a tool used for implementing rule-based modeling [11]. Boolean 

networks approximate the dynamics of the target systems by assuming that its key components 

can be in either true state or false state. The state of each of the variables of the network are 

updated by Boolean functions that determine the next value of the variable based on particular 

inputs [8]. MaBoos [12] and BoolNet [13] are some of the tools used to implement Boolean 

network modeling.  

Ordinary differential equation (ODE) models represent the dynamics of the system by describing 

how each of the state variables change as continuous functions of the rest of the variable of the 

system. ODEs have the advantage of being tractable and easy to implement. Simple ODE systems 

are analytically tractable while complex ODE systems are computationally tractable [4]. 

Sensitivity and bifurcation techniques can be used to study the behavior of ODE models over 

different ranges of their parameter, often revealing multiple stable states in the system that can 

have clinically relevant interpretation as healthy (e.g successful viral or tumor clearance) or 

unhealthy states (e.g chronic viral infection or unsuccessful cancer treatment). ODE models are 

the state-of-the-art approach in modeling complex systems, including the immune response. 

These different types of dynamical models can be either stochastic or deterministic depending 

on whether the dynamics of the system are fully determined by transition rules and initial 

conditions.  
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Despite being analytically and computational tractable, there are limitations to these non-spatial 

methods. These models assume that the variables they describe are homogenously distributed 

in the compartments they describe. This assumption might be a good approximation when data 

is collected from homogenate tissue, such as blood, spleen, or the lymph, but might not be 

realistic in other tissues, where the resulting dynamics might be dependent on highly localized 

and stochastic events [10]. A continuous state alternative is using “reaction-diffusion” equations 

in the form of partial differential equations (PDEs). PDEs can capture changes in the dynamics of 

the system as a function of more than one independent variable (such as time and space). As 

PDEs become more complicated, computationally solving them can be challenging. Although 

PDEs can provide spatial information, their solutions are still mean field descriptions of the 

system and provide no information about the individual components of the systems [4].  

Agent-based models (ABMs) are alternatives to mean-field modeling approaches. ABMs describe 

biological systems as composed by populations of agents, and the dynamics of the whole systems 

are determined by the interactions between these individual agents. ABMs can generate complex 

and emergent behaviors, including intricate spatial and temporal patters, from relatively simple 

rules [4]. The properties and behaviors of agents can be describe using a language that closely 

resembles the language used to describe the system itself thus facilitating collaboration between 

modelers and experimentalists. AMBs are intrinsically stochastic and can capture variations in 

the outcomes of diseases that depend on highly localized events [4]. ABMs have been used to 

study tumor growth, tuberculosis, and viral infections such as Influenza and SARS-CoV-2.  

ABMs can be realized using different mathematical frameworks and can be simulated on-lattice 

or lattice-free. Cellular Automata (CA) represent agents as single pixels in a grid. CAs are 
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computationally inexpensive but limited in terms of the spatial resolution. On the opposite end, 

Cellular Potts Models (CPM) represents agents as collection of pixels. CPM can provide greater 

spatial resolution but are more computationally expensive. Off-lattice approaches can be either 

centered-based or boundary-based [14]. Center-based methods can represent agents as single 

points or as collection of points, such as in the Subcellular Element Method. Boundary-based 

methods include vertex and front-tracking models [14]. 

We model cellular spatial dynamics using the Cellular Potts Model (CPM or Glazier-Graner-

Hogeweg model) implemented in CompuCell3D [18]. CPM represents biological cells and 

compartments as generalized cells as occupying sets of voxels on a fixed lattice. These 

generalized cells can represent biological cells, cellular subcomponents, or extracellular domains. 

Each voxel in the lattice has a position 𝑥 and an index associated with the generalized cell 

occupying that voxel 𝜎(𝑥). To represent distinct phenotypic states, generalized cells 𝜎 are 

assigned a cell type 𝜏(𝜎). In the absence of external stimuli, cytoskeletal membrane fluctuations 

and differential adhesion to the extracellular matrix drive migration of biological cells in a 

random-walk pattern. Random cell motility is stimulated by stochastic exchange of voxels 

occupied by each generalized cell. Other spatial properties and behaviors are modeled by 

associating effective energy terms with generalized cell properties such as size and shape 

constraints (volume, surface, elongation) and behaviors such as mechanical interactions (cell 

adhesion) and directed motion (chemotaxis). 

The configuration of the lattice evolves to minimize the system’s effective energy:  

ℋ =((𝐽*𝜎(𝑥)𝜎(𝑦),
!

"#

*1 − 𝛿$(#),$("), +(𝜆(𝑣(𝜎) − 𝑉(𝜎))(
$
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The first term models cell adhesion: 𝑁 is the neighborhood of site 𝑥, 𝛿),*  is the Kronecker-delta 

function, the term *1 − 𝛿$(#),$("), enforces counting energies between voxels belonging to a 

different cell and 𝐽*𝜎(𝑥)𝜎(𝑦), is the effective contact energy per unit surface area between cells 

𝜎(𝑥) and 𝜎(𝑦). The next terms models cell volume as a quadratic constraint: 𝜆 denote the 

strength of the constraint, 𝑣(𝜎)	denote the current volume of the cell and 𝑉(𝜎) denote the target 

volume. Different properties of cells can be modeled by similar constraints including surface area, 

chemotaxis, and elongation/polarization. The values of these constraints can be assigned by 

individual cells or to groups of cells depending on their cell type. 

The lattice configuration evolves by voxel copy attempts. A target voxel 𝑥)  and a neighboring 

source voxel 𝑥*  are randomly selected. If different cells occupy these voxels, the energy change 

(Δℋ) associated with updating the generalized cell at 𝑥)  with the one occupying 𝑥*  is evaluated. 

The probability of accepting the voxel copy attempt is given by a Boltzmann acceptance function: 

Pr 9𝜎*𝑥*, → 	𝜎(𝑥)); = 1	𝑓𝑜𝑟	Δℋ	 ≤ 0, 𝑒
+ℋ
- 𝑓𝑜𝑟	Δℋ > 0 

where Δℋis the change in the systems effective energy from the voxel copy attempt and 𝑇 is the 

amplitude of the cell-membrane fluctuations leading to random motility. The intrinsic simulation 

unit is a Monte Carlo step corresponding to a series of voxel copy attempts. Figure 2 shows how 

a lattice configuration evolves to minimize the total energy of the system.  
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Figure 1.2. Cellular Potts Model Lattice Configuration and Effective Energy. Schematic representation 

of evolution of a lattice configuration of a Cellular Potts Model. Generalized cells occupy multiple lattice 

sites and have a corresponding type (green, yellow, red) that determines the biological characteristics. 

These characteristics are expressed as constraints in the Hamiltonian that encodes the effective energy 

of the systems. The lattice evolves by changes in the identity of each pixel that minimize the energy of 

the system. Adapted from [15]. 

ABMs are especially suited to address the modeling challenges that arise from having to integrate 

multiple biological scales. ODEs representing molecular, intracellular, and whole-organism 

processes can be coupled with ABMs representing cellular and intercellular processes [2]. These 

multiscale models are at the forefront of mechanistic modeling of biological complex systems. 

ABMs can be designed following a modular architecture that mimics the biological organization 

of the target system into functional units and facilitates the collaboration between research 

groups (Figure 3). ABMs provides a platform in which data and models from different laboratories 
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(and different sets of experiments) can be integrated [7]. Modeling complex systems, and 

specifically modeling the immune system, can only be accomplished as a multidisciplinary and 

collaborative effort. 

 

Figure 1.3. Biological and ABM Organization. Correspondence between biological scales and ABM 

architecture at different levels. Molecular interactions can be represented as rules that determine the 

states of individual cell agents. Interactions between cell agents determine the dynamics of the target 

tissue. Different modeling domains can be integrated to represent complex organs. Additional rules can 

be used to represent interactions between organs and the overall state of the organism. Adapted from 

[7]. 

Mathematical and Computational Modeling of the Immune Response to Viral Infections 

Viruses are highly efficient pathogens that consist of viral genetic material and a protective 

protein and lipid coat. Since viruses lack the machinery to self-replicate, they must hijack the 

cell’s own replication machinery [16]. The cellular membrane of epithelial cells is one of the first 

physiological barriers viruses encounter when infecting a host and they have evolved 

mechanisms for interacting with cellular surface receptors. Once the virus crosses the first 

physical barriers, it spread further by overcoming transport limitations and the immune 
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response. Viruses spread as diffusive virions in the interstitial space above the apical surface of 

epithelial cells. Some viruses can also spread via cell-to-cell transmission [16]. 

The viral replication cycle includes multiple steps and the overall time its take for a virus to 

undergo a full replication cycle, from binding to the cell surface to release of new progeny, 

depends on the collective rates of all these processes [17]. Viruses can store their genetic 

information in either as DNA or RNA molecules, but all must produce mRNA and must use the 

cells translation machinery to produce viral proteins. Those viruses that contain a positive-sense 

RNA genome can directly serve as templates for viral mRNA, whereas other viruses might require 

additional intermediate steps. The larger viral genomes are usually composed of DNA such as 

Epstein-Barr virus, smallpox, and Pandoravirus [17]. Viruses like influenza virus, and hepatitis C 

virus (HCV) are RNA viruses and contain smaller genomes. Retroviruses such as human 

immunodeficiency virus type 1 (HIV-1) reverse transcribe their RNA genome to make viral DNA 

which is integrated into the host cell’s DNA and later transcribed the cells own transcription 

machinery [17].   

Mathematical modeling has advanced our understanding of the dynamics of viral replication, 

especially those mechanisms that are difficult to grasp only through experimental approaches 

[18]. Mathematical models have helped identify viral infection parameters such as the in vivo 

replication rate, the clearance rate of virions and the clearance rate of infected cells [16]. 

Modeling has also aided in identifying key druggable targets and optimal therapeutic 

interventions. For example, mathematical modeling was instrumental in developing successful 

treatments for chronic viral infections such as HIV and HCV [19]. Modeling has been used 

extensively to studying acute respiratory viral infections such as influenza. Modeling has shown 
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that therapeutics must be administered before the peak of viral loads to be effective [19]. More 

recently, mathematical modeling has also been an important tool in gaining rapid understanding 

of quickly emerging viruses such as SARS-CoV-2.  

ODE modeling has been extensively used to describe the intracellular processes that constitute 

the viral life cycle. Equations describing binding between cell surface receptors and viral particles 

are expressed as mass action processes that depend on the amount of free virus and unbound 

receptors [17]. Transcription is the amplification step in which the viral genome is replicated an 

is usually expresses using non-linear equations with decay. Other processes such as translation, 

assembly, encapsidation and release can be modeled as first other differential equations. Each 

of these equations contribute to the total duration of the viral replication cycle, and their 

parameters can be identified experimentally.  

Within-host models are used to account for the dynamics of virus replication in a host organism. 

The standard model of viral dynamics (SMV) is a set of coupled differential equations that 

describe a cell population at different stages of viral infection and the production and decay of 

infectious virions (Figure 3). In this model cells can be in 4 stages of viral infection: uninfected, 

latently infected, virus producing and dead. Intracellular processes such as transcription and 

assembly are combined in the viral production rate [18]. The model does not include explicit 

immune response, and thus is referred to as “target cell limited”. The immune response is 

assumed to be either negligible or constant through the course of the infection and implicitly 

represented by parameters such as the death rate of infected cells or the clearance rate of virions 

[20]. When simulated, the viral load increases exponentially at first, when plenty target cells are 

available, peaks when most of the cells are infected and declines as infected cells die [19]. The 
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model has been successfully calibrated with viral load data from infected patients and has proven 

an important tool to understand the replication dynamics of HIV and HCV [18]. The model has 

also been critical to improving larger scale epidemiological models [20].  

 

Figure 1.4. Equations and Conceptual Representation Standard Viral Load Model. The model contains 

four state variables representing population of cells in different stages of viral infection: 

susceptible/uninfected (S), latently infected (E), virus producing (I) and dead (D). It contains a state 

variable that represents the infectious virions (V). The model contains five parameters (b, k, d, p and c) 

that determine the rates of transition between cell types and production/clearance of virions. Adapted 

from [21]. 

Intracellular viral cycle and within-host viral spread models can serve as the budling blocks for 

more complex multiscale models. Intracellular virus growth models can be coupled with reaction-

diffusion equations that describe how infectious virions are transported in the extracellular 

environment [17]. Transitions probabilities can describe the rates at which individual cells 

transition from one stage of viral infection to the next. Additionally, these models can include 

detailed information of the immune response, including explicit representations of immune cell 
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types such as macrophages, neutrophils, CD4+ and CD8+ T cells [19]. These multiscale models 

overcome the limited scope of viral cycle models and the convolution of critical kinetic 

parameters in the SVM. They are also able to represent non-homogenous cell populations that 

might differ in viral replication kinetics [18]. Multiscale approaches are well-suited to understand 

the dynamics of viral infection because viral spread is influenced by multiple interacting factors, 

including target cell availability, tissue permissibility and the immune response.  

Besides HIV and HCV, the dynamics Influenza A (IAV) infection has been one of the most 

extensively modeled viral infections. IAV is an endemic respiratory virus that causes annual 

epidemic outbreaks. Most people will be infected by IAV multiple times during their lifetime [20]. 

IAV infects cells of the airway epithelium, specifically the non-ciliated cells. Most cases of human 

influenza involve infection of the upper respiratory tract, but in severe cases it can also infect the 

lower respiratory tract. The incubation time of influenza can vary anywhere from 24-96 hrs. The 

viral titers peak at day 3 post-infection (dpi). Effector immune cells CD8+ T cells peak around day 

7 when the infection begins to resolve [20].  Most influenza models are epidemiological and are 

used as tool to inform public health policy. However, within-host models have been developed 

to study the dynamics of IAV infection and quantifying the processes that determine disease 

severity, duration, and outcome [20].  The SVM has been successfully calibrated to capture the 

kinetics of the course of the influenza infection, even in the absence of an explicit immune 

response.  

SARS-CoV-2 is the etiological agent behind the ongoing COVID-19 pandemic. Mathematical 

modeling has been essential to develop rapid understanding of the viral infection, to develop 

effective treatments and vaccines, and to guide public health policy. The SVM has been used as 
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the starting point to study within-host spread of SARS-CoV-2, calibrated with a wealth of publicly 

available data. More complicated models have been used to investigate mechanism driving the 

course of the infection. For example, adding explicit interferon-alpha to the model does not 

usually improves how well the model fits to the data, suggesting that interferon response is 

inhibited and does not play a role in reducing the spread of the infection [19]. Other approaches 

have been used to determine the time scales of the adaptive immune response. These models 

have suggested that adaptive immunity develops between one and two weeks after infection 

[19]. Identification of these parameters is critical when dealing with a novel viral disease 

spreading fast around the globe. 

Mathematical and Computational Modeling of the Immune Response to Cancer 

The primary characteristic of malignant cancerous cells is their ability to proliferate despite 

inhibitory signals, nutrient-deprived environments and immunosurveillance [9]. Cells accumulate 

genetic changes over time and sometimes acquire phenotypical characteristics that allow them 

to persist and proliferate in tissue. Carcinogenesis, the process by which cells progressively 

become malignant, is driven by multiple physiological factors including mutations, interactions 

between cells and environmental factors such as diet and radiation exposure [22]. Solid tumors 

grow in epithelial tissue such as epithelial ducts (carcinomas) or skin (melanomas), supportive 

tissue (sarcomas) or brain tissue (gliomas) [23]. Tumors induced changes in their 

microenvironment, such as generation of new blood vessels (angiogenesis), that allows them to 

sustain their elevated proliferation rate and facilitates their spreading to distant sites 

(metastasis). Because of the multiple interactions driving tumor initiation and progression, 



 18 

cancer development must be studied at multiple scales, and specially at the level of the collective 

interactions of cells and their environment [22]. 

To meet the energy demands of their high proliferation rates, cancer cells mantain elevated 

metabolic activity [24]. In a single tumor, different cells can rely on different metabolic pathways 

for energy production, including glycolysis and oxidative phosphorylation. Thanks to the work of 

Warburg, it is now recognized that cancer cells rely preferentially on the glycolytic metabolic 

pathway even at physiological oxygen tension. The Warburg effect provides multiple advantages 

to cancer cells. Rapid glucose metabolism helps to maintain oxygen levels above hypoxic 

thresholds reducing the need for new vasculature [25]. Other benefits include enhanced 

biosynthesis, altered cell signaling and reduced risk of reactive oxygen species damage [24]. 

The tumor microenvironment (TME) is composed of different cell types and matrix proteins. 

Endothelial cells, fibroblasts and different types of immune cells interact with the growing tumor. 

Some stromal cells such as myo-fibroblasts support tumor proliferation by providing growth 

factors and cytokine, as well as depositing matrix and modifying connective tissue. [26]. As the 

tumor growths, the existing (and sometimes damaged) vasculature is unable to provide nutrients 

and oxygen to meet the tumor metabolic demand leading to the recruitment of new vasculature. 

Glycolytic metabolism produces acidic waste products and contributes to the acidification of the 

TME. This acidic environment provides selective pressure that can give rise to more malignant 

phenotypes and inhibits the antitumor immune response [24]. 

For tumors to maintain sustained proliferation, migrate and invade secondary sites, cancer cells 

need to evade the constant surveillance of the immune system. Immune cells are attracted to 

the tumor site, either by local signaling or recruitment from the blood or the lymphatic system 
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[26]. Tumor cells present antigens and produce cytokines that are recognized by immune cells. 

Cells of the innate immune systems, such as natural killer (NK) cells and macrophages, infiltrate 

the tumor and kill tumor cells without the need of recognizing antigens [26]. Cells of the adaptive 

immune response, such as cytotoxic CD8+ T cells (CTL) are recruited to the tumor site, recognize 

in cancer cells by their antigen presentation and induced apoptosis. Cancer cells developed 

multiple mechanisms to evade the immune response. They can downregulate expression of 

major histocompatibility complex (MHC) class-I receptors on their cell surface, thus becoming 

invisible to CTLs [27]. Tumors can also increase the recruitment of regulatory T cells leading to 

increased inhibition of CTLs. Acidification of the TME also leads to higher thresholds for T cell 

activation [24]. 

Therapeutics that focus in targeting cancer cells directly often lead to resistance and selection of 

more invasive phenotypes [14]. These failures are in part due to the complex interactions 

between cancer cells and their environment. Immunotherapies are a relatively novel and 

promising set of treatments aimed at boosting the overall immune response against cancer [27]. 

Examples of immunotherapies include vaccines and immune checkpoint inhibitors (ICI) that 

target some of the mechanisms of immune evasion. For example, tumor cells secrete inhibitory 

molecules such as PD-L1 that suppress T cell activity via de PD-1 signaling pathway [27]. 

Monoclonal antibodies that target PD-L1 are used as ICI treatment [28].  

Mathematical modeling in cancer research can be used to elucidate mechanisms driving tumor 

progression and immune suppression. Models can also be used as platforms for drug 

development and optimization. By redefining our understanding of the mechanisms of tumor 

progression, mathematical models can also challenge existing paradigms and suggest new 
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mechanisms [22]. A wealth of mathematical models of cancer has been developed to predict 

patient-specific disease outcome and response to therapy. When validated with clinical data, 

they can be used to suggest appropriate therapeutic strategies, such as combination of 

chemotherapy and radiation, scheduling and dosing [22]. Scheduling and dosing are the most 

critical aspects of cancer treatments because improper timing can lead to relapse and evolution 

of resistant cells [23].  

One approach to cancer modeling is the use of continuum ODE models. These types of models 

are appropriate to describe tumor growth in the spatiotemporal scales where the behavior of 

individual cancer calls can be averaged over the population [29]. These models often describe 

how the tumor volume growths as cancer cells interacts with their environment, including 

nutrients, immune cell types and therapies. Single equation ODE models usually describe tumor 

volume explicitly and any anti-tumoral host response as implicit saturation terms on the rate of 

tumor growth [30]. Systems of coupled ODEs can be used to model interactions between tumor 

and immune cells, cytokines, and nutrients. Two equations ODE models are usually employed to 

explicitly model immunological barriers that tumor must overcome to proliferate. Three 

equations models can be used to separate the immune response into innate and adaptive or to 

represent cytokine-mediated feedback mechanisms.  

While ODE models provide useful frameworks to explore mechanism of interaction between 

tumor cells and their environment, they assume a uniform environment and do not consider 

spatial heterogeneity [30]. Molecular, cellular and tissue heterogeneity are hallmarks of cancer 

and important determinants of disease severity and treatment outcome [27]. Spatial 

heterogeneity has been documented in pathological screenings. For example, spatial localization 
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of immune cells is a prognosis indicator in different types of cancer [26]. Drug resistant can be in 

part attributed to spatial heterogeneity in the tumor microenvironment. PDE modeling can take 

into consideration some of the temporal and spatial characteristics of tumor growth. For 

example, PDEs can be used to describe tumor growth as a function of both time and 

concentration of oxygen at a certain position. Oxygen will be represented as a diffusive molecule 

with a given diffusion constant and decay/consumption rates [22]. However, PDEs do not account 

for the individual variation of the different components of the tumor microenvironment [9].  

The complexity of modeling tumor growth increases when taking into consideration that TME 

interactions span over multiple spatial and temporal scales. Because heterogeneity cuts across 

all these scales, mathematical models that average behavior across populations (either it be PDEs 

or ODEs) are insufficient to capture the complex dynamics governing tumor growth. Hybrid 

multiscale models that combine discrete and continuum mathematical approaches are better 

suited for modeling tumor growth [23]. In these models, discrete scholastic processes describe 

cell growth and division, migration, and phenotypical variation. Continuum models describe 

diffusion of nutrients and molecules and deposition of extracellular matrix. Continuum models 

can also describe intracellular signaling and processes.  

When effectively coupled, hybrid multiscale models can bridge the several spatiotemporal scales 

involved in determining tumor growth dynamics [22]. They can also capture the cell-to-cell 

heterogeneity and individual dynamics of cell proliferation [9]. Several hybrid models have been 

developed and proposed to studying tumor growth. Cellular Automota have been used to study 

hypoxia-driven tumor invasiveness in ductal carcinoma [31]. Such model was latter extended to 

cell adhesion and morphology [32]. Center-based models have been used to study oxygen drive 



 22 

proliferation and cell death at the tumor necrotic core [33]. Cellular Potts Model have been used 

to study evolution in tumor cell populations [34] and angiogenesis [35].  

Agent -based models have also been developed to study the interaction between tumor cells and 

the immune response. A model of the interaction between tumor cells and CTLs in a mouse 

model of melanoma showed that CTLs efficacy correlates with their ability to infiltrate the tumor 

[16].  Agent-based models have been developed to studying the effects of immune-enhancing 

and combination therapies [27]. One of the limitations of these hybrid models is that some of the 

modules governing the dynamics of tumor growth are qualitative [22]. In the case of models of 

anti-cancer therapy, these limitations could be overcome by combining ABMs with traditional 

pharmacokinetic and pharmacodynamic models that have been thoroughly validated. In other 

cases, such models can be used to identify qualitatively distinct disease and treatment outcomes, 

and the key mechanism and parameters controlling them. 

Dissertation Organization 

The next four chapters of the dissertation present frameworks, workflows and models developed 

to address some of the complexity of the immune system and its response to pathogens and 

cancer. First, we present a modeling framework that supports modeling of the immune response 

to viral infections. We showed how different modules can be used to represent different 

components of the immune system, and how variation on parameters can produce qualitatively 

different simulation outcomes. These regions of the parameter space can be associated with 

different disease and clinical outcomes: successful viral clearance versus severe viral infection. 

We further showed how the framework can be used to test and optimize therapeutic 

interventions, by modeling a treatment that inhibits viral replication.  
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Second, we present a spatiotemporal model of the type-1 interferon (IFN) response to viral 

infection. The model was generated by combining two previously calibrated models. An 

intracellular model describes the activation of the IFN pathway and its inhibition on viral 

replication. A cellular model describes transitions between different stages of viral infection and 

diffusion of extracellular virions and IFN molecules. We showed that the model recapitulates the 

dynamics of viral growth in vivo. We also showed that varying key parameters drives the systems 

to two distinct simulation outcomes: uncontrolled viral growth and plaque containment. Finally, 

by performing sensitivity analysis we identified key parameters driving simulation outcomes.  

These results suggest that the parameters of the IFN pathway are better identified in 

experimental conditions leading to plaque arrest. 

Third, we present a spatiotemporal model of the immune response to cancer. The model 

incorporates the hypothesis that aerobic fitness modules the tumor microenvironment TME by 

shifting a glycolytic threshold in cancer cells. The acidification of the TME inhibits the immune 

response to tumors by increasing the recruitment of regulatory T cells. The model was calibrated 

and validated using clinical prevalence data. We showed that the model can be used to optimize 

immunotherapies using the patient’s fitness as a marker of the immunogenicity of the tumor. 

Lastly, we present a spatiotemporal model of RSV-HMPV viral coinfection. Viral growth 

parameters for each virus are calibrated using single infection viral load data. The ODEs are then 

spatialized to produce ABMs equivalents. Co-infection simulations are performed under the 

assumption that the only interaction between viruses is competition for target cells. Simulations 

results are contrasted with experimental data to show that this hypothesis is insufficient to 



 24 

explain the fold changes in viral load observed during viral co-infections. The model is then used 

to suggest how additional mechanistic hypotheses can be tested and validated. 

 

  



 25 

A multiscale, multicellular, spatiotemporal model of acute primary viral infection and 

immune response in epithelial tissues and its application to drug therapy timing and 

effectiveness 

Introduction 

Mathematical modeling methods integrate the available host- and pathogen-level data on 

disease dynamics that are required to understand the complex biology of viral infection and 

immune response to optimize therapeutic interventions [38]. Mathematical models and 

computer simulations built on spatial and ODE frameworks have been extensively used to study 

in-host progression of viral infection [39], with a recent acceleration in the development of spatial 

COVID-19 viral infection models in response to the ongoing global pandemic [40].  

Building multiscale models of acute primary viral infection requires integrating submodels of 

multiple biological components across scales (e.g., viral replication and internalization, immune 

system responses). Non-spatial, coupled ordinary differential equation (ODE) models can 

represent many aspects of pathogen-host interactionSpecialized ODE models can describe both 

the entire virus-host response at the tissue and organ levels and different stages of the viral 

replication cycle within cells, such as binding and internalization [41], viral genome replication 

and translation [42], assembly, packaging and release [43]. By fitting ODE models to clinical or 

experimental data, researchers have been able to estimate important parameters, such as the 

turnover rate of target cells, average lifetimes of viral particles and infected cells and the rate of 

production of new viral particles by infected cells [44].  

Non-spatial models assume that the distribution of the modelled quantities (e.g., cells, viruses, 

chemical species) are uniformly distributed in space and time [4]. This assumption might not be 
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realistic in solid tissues, where viruses and host immune cells are not usually distributed 

homogeneously and infection propagates locally [44]. By averaging over spatiotemporal and 

individual cell variations, non-spatial models may not accurately reflect the effects of tissue 

heterogeneity and its effect on viral infection dynamics [45]. Compartmental ODE models, like 

physiologically based pharmacokinetic models (PBPK) models or multi-compartment tissue 

infection models, maintain some of the simplicity of single-compartment ODE models, while 

recognizing the critical role transport can play in viral infection, immune response and treatment 

[46].  

The spread of and immune response to some viruses is highly spatially localized. For example, 

COVID-19 often begins with infection localized to the nose and throat and then spreads to the 

lungs [47], with the specific location, size and distribution of lesions affecting clinical outcomes. 

Spatial models have been increasingly used to address such issues, including partial differential 

equations [48] and agent-based models (ABM) [49]. ABMs represent host cells as spatially 

located, individual agents, and propagation of the infection emerges from individual interactions 

between agents. ABMs are also well suited for extending existing models by modular integration 

of biological subcomponents. ABMs have been developed to account for infection dynamics in 

different biological compartments and to model disease progression of HIV [50] and 

dissemination of influenza virus to the lower respiratory tract [51].  

Spatial models often predict significantly different viral and immune dynamics, parameter 

estimates and therapy efficacies from their non-spatial counterparts. Stochastic effects arising 

from spatial conditions, such as local availability of target and immune cells, greatly influence 

early infection dynamics and lead to different infection outcomes [44]. Non-spatial models 
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generally produce viral load titers higher than spatial models, and the peaks of infection happen 

significantly earlier [4]. Homogenous recruitment of immune cells in spatial models matches ODE 

models when the number of infected is large, but not at the beginning of the infection when the 

number of infected cells is small [45]. These differences can lead to inaccurate estimates of 

important parameters such as viral infectivity, viral diffusion and the basic reproductive ratio.  

In this chapter, we present a framework for the multiscale multicellular spatiotemporal modeling 

and simulation of the dynamics of infection and immune response in epithelial tissue.  

We consider a primary infection by a virus which the immune system has not previously 

encountered (e.g. there is no initial adaptive immune response). We focus on acute cases (cases 

with relatively rapid onset and short duration) in which a properly functioning immune system 

eventually eliminates the virus. Relevant components of the immune system were included. 

Those that are not explicitly modeled can be included within the modular, extensible modeling 

framework. 

Viral infection generally begins when a virus breaches the barrier of one or more tissues causing 

a limited number of target cells to be exposed and then internalize the virus. The virus begins to 

replicate within the initially infected target cells, but cells do not release any newly synthesized 

virus for a period of hours to days (the eclipse or lag phase of infection). Within hours, infected 

cells release proinflammatory cytokines and complement proteins as warning signals to 

neighboring cells [52]. Some of these cytokines, like Type 1 interferons, can induce autocrine and 

paracrine anti-viral responses (e.g., inhibiting viral replication, viral entry or inducing cell death) 

[53]. Cytokines recruit circulating innate immune cells from the blood to the infected tissue and 

attract immune cells within the tissue by chemotaxis [54]. The early innate immune response 



 28 

activates a number of cell types including dendritic cells, macrophages, neutrophils, mast cells, 

basophils, eosinophils, leukocytes, and natural killer (NK) cells [55]. As the viral load increases, 

immune signaling increases rapidly (this increase is associated with the onset of fever and other 

symptoms) recruiting more circulating cells of the innate immune system to the infection site 

[56].  

Immune signals from infected cells and innate immune cells help trigger the adaptive immune 

response. Dendritic cells that have engulfed and degraded viral pathogens migrate to nearby 

lymph nodes and serve as viral antigen presenting cells (APCs) to naive T cells. Antigen 

presentation induces naive T-cell proliferation and differentiation into pathogen-specific 

memory and effector T-cells [57]. Cytotoxic effector T-cells migrate to the site of infection and 

induce apoptosis of infected cells by antigen recognition. In acute infections, adaptive immune 

response leads to pathogen neutralization and clearance [58]. Viral loads usually decrease rapidly 

as adaptive immune cells like CD8+ T-cells enter the tissue and eliminate infected cells.  

Antigen presentation also induces activation of naive B-cell lymphocytes into antibody-producing 

memory B-cells and plasma cells, which leads to the production of antibodies. The adaptive 

immune response remembers its exposure to previous pathogens and provides the body with 

pathogen-specific effector cells and antibodies which neutralize and clear them, providing long 

term immunity [59]. Tissue damage results from virus and cytokine-induced cell death (which is 

first noticeable after 2 or 3 days) and from killing of infected and uninfected cells by immune 

cells, which increases steadily until the end of viral clearance. Tissue recovery and healing start 

around the time of viral clearance and may last for several weeks. Figure 2.1 presents a schematic 

of the dynamics of viral replication and the corresponding immune response. 
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Figure 2.1. Schematic Of the Innate and Adaptive Immune Response During Primary Acute Viral 

Infection. After initial exposure to the virus, extracellular viral load begins to rise (shaded green curve). 

Initial innate immune responses include phagocytosis of virus by neutrophils and macrophages, Type I 

interferon-induced antiviral resistance (IFN) (dark blue) and killing of infected cells by Natural Killer (NK) 

cells and other innate cell types (red). The black vertical dashed line denotes the transition between innate 

and adaptive immune responses. The adaptive immune response is triggered both by cytokine signaling 

and the migration of antigen-presenting cells from the tissue to the lymph nodes (not shown). In the later 

phases of infection additional adaptive immune components come into play, including virus-specific 

cytotoxic T-cells (light blue). The orange vertical dashed line denotes the onset of the humoral adaptive 

immune response. B-cells produce virus-specific antibodies (orange line) which bind and inactivate virus 

directly and facilitates clearance of infected cells by other cell types. Tissue damage (shaded purple curve) 
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accumulates due to cell death from direct responses to virus and from immune-cell killing by contact-

mediated, diffusible factor-mediated and bystander-mediated mechanisms and eventually dissipates as 

cells proliferate to repair the damage (Adapted from [59]). The specific time course of all components 

varies among viruses, host tissues and host species, but the general sequence of events and immune 

response components are generally preserved. 

Our base model consists of three interconnected components (Figure 2.2A): an epithelium 

component, an extracellular environment component and a lymph node component. The model 

represents the epithelium as a compact monolayer of initially identical immobile epithelial cells 

that can adopt three types depending on the state of viral infection (i.e., uninfected, infected, 

virus releasing, dead, Figure 2.2C). Cells can internalize extracellular virus, modulate their number 

of surface receptors, replicate virus and release virus (Figure 2.2B). They also release an 

extracellular cytokine signal when infected and die in response to virus production. The model 

represents the extracellular environment as a space above the epithelium which provides the 

space in which immune cells are recruited and move, and into which cells release viruses and 

chemicals. We include a single type of immune cell that exhibits many key immune-cell behaviors 

associated with macrophage, neutrophil, NK cell and T-cells, including activation, chemotaxis, 

relaying and amplification of cytokine signals and contact and bystander cytotoxicity. We 

simulate extracellular-virus particle density as a continuum field and particle transport and 

clearance as continuous diffusion and decay. We model recruitment of immune cells to the 

simulation domain using an ordinary differential equation for the immune signal (S) which 

represents the balance between pro- and anti-inflammatory signaling and the delay due to 

antigen-presenting cell transport from the tissue through the lymphatic system to the lymph 
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node and due to the time required for T-cell amplification. In the absence of infection, the lymph 

node maintains a small resident immune cell population in the tissue. 

 

Figure 2.2. Full Model Schematic. A. Model objects, processes and interactions. Conceptual model of an 

epithelial tissue and lymph node. Schematic representation of the model objects, processes and 

interactions. Epithelial and immune cells refer to the two main classes of cells. Interactions occur within 

an extracellular environment, and a compartmental model of a lymph node controls immune-cell 

recruitment to the tissue. Together the epithelial-cell, extracellular-environment and immune-cell 

components represent the epithelial tissue. Each model object has associated processes that dictate its 



 32 

states and behaviors. Epithelial-cell processes include viral internalization (E1), viral replication (E2), viral 

release (E3) and cell death (E4). Immune cell processes include activation (I1), chemotaxis (I2), contact 

cytotoxicity (I3) and oxidative cytotoxicity (I4). Activated immune cells participate in oxidative cytotoxicity 

(I4) and secrete oxidative agents into the oxidizing-agent field (T3). The virus field (T1), cytokine field (T2) 

and oxidizing-agent field (T3) describe spatially-varying densities of extracellular components. Field 

processes describe diffusive transport and clearance of material in the extracellular environment and 

activated transport to the lymph nodes. The lymph node is a single-compartment model whose pro- or 

anti-inflammatory state specifies the recruitment or removal rate (L1) of immune cells in the epithelial 

tissue. The transport of cytokines to the lymph node promotes its proinflammatory state. B. Viral Life 

Cycle: Interactions in the viral internalization, replication and release models. Schematic representation 

of inputs, outputs and interactions between stages of the viral replication model. Extracellular viral 

particles are internalized by the viral internalization model and initiate the viral replication model. The 

main stages of the viral replication model are unpacking, viral genome replication, protein synthesis and 

viral assembly and packaging. The output of the viral replication model passes to the viral release model, 

which transfers newly assembled viral particles from the cells into the extracellular environment. C. Cell 

Types and Transitions. Epithelial cells are of type uninfected if they have not yet internalized any virus 

(E1). They are of type infected if they have internalized virus but are not yet releasing virus into the virus 

field (inactive E3). They are of type virus releasing if they are releasing virus into the extracellular virus 

field (activated E3). Immune cells are initially inactive and do not participate in the oxidative cytotoxicity 

(I4) or chemotax towards higher concentrations of the cytokine field (I2). Inactive immune cells become 

activated (I1). In all panels, dashed arrows with barbed heads represent transformations, solid arrows 

with barbed heads represent transport and solid arrows with lollipop heads represent regulation. 

We create representations of the main types of components and biological mechanisms 

associated with acute, primary viral infection and immune response, with a special emphasis on 



 33 

modularity that supports the development of more detailed models in future work (e.g., the 

creation of additional cell types, signals and detailed cell responses of various aspects of the 

immune response). 

Models and Methods 

All quantitative models are implemented in a modular, extensible simulation architecture built 

using the CompuCell3D simulation environment, which is publicly available for download and 

further development by interested members of the scientific community. 

Conceptual Model: Biological Hypotheses and Assumptions  

We consider viral propagation in an epithelial tissue and a lymph node. The tissue contains two 

interacting spatial components: an epithelium component (consisting of a monolayer of 

epithelial cells), and an extracellular environment component (containing immune cells, 

extracellular virus, and diffusive chemicals). The state of the lymph node component is 

determined by signaling from the tissue. In proinflammatory state, the lymph node model adds 

immune cells to the extracellular space. It removes immune cells when in an anti-inflammatory 

state.  

Epithelial Cell Modules 

The epithelium component of the model represents the layer of epithelium in the tissue and is 

composed of epithelial cells of four types: uninfected, infected, virus-releasing and dead (Figure 

2.2C). We assume that epithelial cells are immobile. Epithelial cells contain modules that model 

the viral life cycle and approximate the number of internal virus as a continuous quantity (Figure 

2.2B): binding and internalization of viral particles from the extracellular environment (E1), 

intracellular replication (E2) and release (E3) of synthesized virus into the extracellular 
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environment, as well as cell death caused by viral-replication-associated damage, immune-cell 

killing and oxidative agent killing (E4). Processes E1-E4 describe epithelial cell functions. E1, E2 

and E4 govern the cell-type transitions of epithelial cells (Figure 2.3). E1 transforms an uninfected 

epithelial cell into an infected epithelial cell. E2 transforms an infected epithelial cell into a virus-

releasing epithelial cell. E4 transforms a virus-releasing epithelial cell into a dead cell.  

 

Figure 2.3. State diagram and interactions of epithelial cells. Epithelial cells can have one of four “cell 

types”: uninfected, infected, virus-releasing and dead. Uninfected cells become infected cells when the 

viral uptake model (E1) internalizes viruses from the extracellular virus field (T1). Infected cells continue 

internalizing viruses from the extracellular virus field and become virus-releasing cells when the viral 

replication model (E2) produces sufficient newly assembled virions. Virus-releasing cells secrete viruses 

into the extracellular virus field (T1) according to the viral release module (E3) and secrete cytokines 

directly into the extracellular cytokine field (T2). Virus-releasing cells can die if the conditions of the virally 

induced cell-death model (E4) are met.  

E1 - Viral internalization 
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Internalization of viral particles involves binding of the viral spike protein to target cell-surface 

receptors, truncation by surface proteins and receptor-mediated endocytosis or fusion with the 

host plasma membrane. These module models extracellular virus binding to epithelial cell 

receptors and internalization (including endocytosis-dependent and -independent routes). We 

assume the dynamics of internalization can be modeled by considering the amount of 

extracellular virus and target surface receptors and the binding affinity between them (T1!E1). 

We also consider the depletion of bound target surface receptors on a cell when it internalizes a 

virus and superinfection of infected cells. Internalized viral particles initiate the viral replication 

process (E1!E2 and Figure 2.2B). 

To capture the stochasticity associated with internalization of discrete virus particles in terms of 

discrete binding events, we assign each uninfected, infected and virus-releasing epithelial cell a 

probability of absorbing diffusive viral particles from the extracellular virus field. The uptake 

probability Pr(𝑈𝑝𝑡𝑎𝑘𝑒(𝜎) > 0) for each cell 𝜎 is given by a Hill equation of the total amount of 

diffusive viral particles in the domain of the cell 𝑐.)/(𝜎), the number of unbound cell surface 

receptors 𝑆𝑅(𝜎) and the binding affinity between them.  

Pr(𝑈𝑝𝑡𝑎𝑘𝑒(𝜎) > 0) =
∆𝑡
𝛼012

*𝑐.)/(𝜎),
3!"#

*𝑐.)/(𝜎),
3!"# + 𝑉012

3!"#
,			where	𝑉012 =

𝑅4𝑘455
2𝑘46𝑣(𝜎)𝑆𝑅(𝜎)

. (2.1) 

Here ℎ012 is a Hill coefficient, 𝑅4 is the cell’s initial number of unbound receptors, 𝑘46 is the virus-

receptor association affinity, 𝑘455 is the virus-receptor dissociation affinity, 𝛼012 is a 

characteristic time constant of uptake and 𝛥𝑡 is the time represented by one MCS. At each 

simulation time step, the uptake probability is evaluated against a uniformly-distributed random 
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variable. When uptake occurs, the uptake rate is proportional to the local amount in the virus 

field and the probability of uptake is used to define the amount (𝑈𝑝𝑡𝑎𝑘𝑒) of virus taken up during 

the MCS,  

𝑈𝑝𝑡𝑎𝑘𝑒(𝜎) 	=
1
∆𝑡 Pr

(𝑈𝑝𝑡𝑎𝑘𝑒(𝜎) > 0) 𝑐.)/(𝜎), (2.2) 

𝑑𝑆𝑅(𝜎)
𝑑𝑡 = −𝑈𝑝𝑡𝑎𝑘𝑒(𝜎). (2.3) 

The amount absorbed by each cell is uniformly subtracted from the virus field over the cell’s 

domain and the cell’s number of cell surface receptors is reduced by the same amount. The 

amount of virus taken up is also passed to the cell’s viral replication model. Infected epithelial 

cells continue taking up viral particles from the environment until their cell surface receptors are 

depleted.  

E2 - Viral Replication  

Individual cells infected with many non-lytic viruses show a characteristic three-phasic pattern in 

their rate of viral release. After infection and during an eclipse phase, a cell accumulates but does 

not yet release newly assembled viruses. In a second phase, the rate of viral release increases 

exponentially until the virus-releasing cell dies. In a third phase, the cell saturates its rate of virus 

synthesis and release. Viral replication hijacks host synthesis pathways and may be limited by the 

availability of resources (amino acids, ATP, etc.), synthesis capability (ribosomes, endoplasmic 

reticulum, etc.) or intracellular viral suppression. 

We model viral replication based on processes associated with positive sense single-stranded 

RNA (+ssRNA) viruses. +ssRNA viruses initiate replication after unpacking of the viral genetic 

material and proteins into the cytosol (E1→E2). The viral RNA-dependent RNA polymerase 
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transcribes a negative RNA strand from the positive RNA strand, which is used as a template to 

produce more RNA strands (denoted by “Viral Genome Replication” in Figure 2.2B). Replication 

of the viral genome is the only exponential amplification step in the growth of most viruses within 

cells. Subgenomic sequences are then translated to produce viral proteins (“Protein Synthesis” 

Figure 2.2B). Positive RNA strands and viral proteins are transported to the endoplasmic 

reticulum (ER) where they are packaged for release. After replication, newly synthesized viral 

genetic material is translated into new capsid protein and assembled into new viral particles 

(“Assembly and Packaging” in Figure 2.2B). These newly assembled viral particles initiate the viral 

release process (E2!E3).  

Our viral replication model combines equations and parameters from several sources to 

represent the replication of a generic virus [41]. The model contains four variables representing 

viral quantities in different states of the viral replication process: internalized virus 𝑈 (Equation 

(2.4), viral genome taking part in genomic replication 𝑅 (Equation (2.5), synthesized protein 𝑃 

(Equation (2.6), and assembled and packaged virions 𝐴 (Equation (2.7). Biologically, the only 

process which can exponentially increase the rate of virus production by a single cell is viral 

genome replication, so the equations include the positive feedback by 𝑅 in Equation (2.5). 

Biologically, factors like the cell’s metabolism, limited number of ribosomes, maximum rate of 

endoplasmic reticulum function and activation of intracellular viral suppression pathways all limit 

production of viral components, so we include a Michaelis-type saturation term for the rate of 

replication in Equation (2.5). Each uninfected, infected and virus-releasing cell in the simulation 

contains an independent instance of the system of ordinary differential equations modeling the 

viral replication process,  
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𝑑𝑈
𝑑𝑡 = 𝑈𝑝𝑡𝑎𝑘𝑒	 − 𝑟0𝑈, ( 2.4 ) 

𝑑𝑅
𝑑𝑡 = 𝑟0𝑈	 + 𝑟78#𝑅

𝑟3895
𝑅	 + 𝑟3895

	− 𝑟2	𝑅, ( 2.5) 

𝑑𝑃
𝑑𝑡 = 𝑟2𝑅 − 𝑟1𝑃, ( 2.6) 

𝑑𝐴
𝑑𝑡 = 𝑟1𝑃 − 𝑅𝑒𝑙𝑒𝑎𝑠𝑒. ( 2.7) 

Here 𝑟0 is the unpacking rate, 𝑟78# is the viral replication rate, 𝑟2 is the translating rate (rate at 

which viral genomes turn into RNA templates for protein production) and 𝑟1 is the packaging rate. 

𝑈𝑝𝑡𝑎𝑘𝑒 is defined in E1 and 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 is defined in E3. The saturation of the rate of viral genome 

replication is represented by a Michaelis-Menten function, 
/$%&'

;	</$%&'
, where 𝑟3895 is the amount of 

𝑅 at which the viral genome replication rate is reduced to /(%)
(

 (and the flux is reduced to 

=
(
𝑟78#	𝑟3895	). The duration of the eclipse phase of single-cell infection (the time between the first 

entry of the virus into the cell and the first release of newly synthesized virus) is approximately 

𝑡>?9)1@> ≈
=
/!
+ =

/(%)
+ =

/#
+ =

/"
 (11.7 hours for the reference parameter set in Table 2.1), with the 

additional complication that in our model, an epithelial cell does not release virus until 𝐴 reaches 

a threshold value. The timescale for tenfold increase of virus release when viral replication is 

maximal is 𝑡=A	 ≈
94B(=A)
/(%)

 (7.7 hours for the reference parameter set in Table 2.1). The number of 

newly assembled virions is passed to the viral release module (E3). Figure 2.4 shows a 

representative time series from the viral internalization, replication and release modules inside 

a single cell. 
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Figure 2.4. Representative Time Series Of Viral Internalization, Replication And Release Models. A 

sample simulation of the viral replication model in a single epithelial cell. The model is initialized with one 

unit of internalized virus (U = 1), and the rest of the state variables set to zero (R = 0, P = 0, A = 0). No 

additional virus internalization occurs during this sample simulation. Dashed line indicates the time of the 

cell’s transition from the infected to virus-releasing cell type. 

E3 - Viral Release  

Newly assembled virions are packed into vesicles and transported to the cell membrane for 

release into the extracellular environment. This module models intracellular transport of newly 

assembled virions and release into the extracellular environment (E3→T1 and Fig 2B “Release”). 

We assume virus is released into the extracellular fluid above the apical surfaces of epithelial 

cells. (E2→E3). No regulation occurs after assembly of new virus particles. 

The amount of virus released by a cell per unit time is proportional to the state variable for 

assembled virions in the viral replication module (E2),  
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𝑅𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑟@𝐴. (2.8) 

Here 𝑟@ is the release rate of viral particles and 𝐴 is the level of assembled virus in the cell (defined 

in E2). The total amount released by each cell 𝑟@𝐴𝛥𝑡 is subtracted from the cell’s state variable 

for assembled virions 𝐴 and passed to the source term of the extracellular virus field (T1) to 

maintain mass balance.  

E4 - Virally-Induced Cell Death 

Models the combined effect of the many types of virus-induced cell death. The production of 

viral proteins interferes with the host cell’s metabolic, regulatory and delivery pathway (E2→E4). 

Internally assembled virions are not released to the environment. The rate of death is defined as 

a stochastic function of the state variable for assembled new virions from the viral replication 

module (E2). If a virus releasing cell dies then it changes its cell type to dead and the cell’s 

instances of the viral internalization, replication and release modules are disabled. The 

probability of virally-induced apoptosis per simulation step is a Hill equation of the current load 

of assembled virus,  

Pr(𝜏(𝜎) → Dead|𝜏(𝜎) = Virus	releasing) =
∆𝑡
𝛼814

*𝐴(𝜎),3%"*

*𝐴(𝜎),
3%"* + 𝑉814

3%"*
. (2.9) 

where 𝐴(𝜎) is the number of assembled virions in cell 𝜎, ℎ814 is a Hill coefficient,𝑉814 is the 

number of assembled virions at which the apoptosis probability is 0.5 per unit time and 𝛼814 is a 

characteristic time constant of virally induced apoptosis.  

Extracellular Environment Component  

The extracellular environment contains the immune cells, extracellular virus, cytokines and 

oxidative agent, and is the space where viral particles (T1), cytokine molecules (T2) and the 
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oxidizing agent (T3) are transported. Immune cells are motile and can be either activated or 

inactive (I1). Inactive immune cells move through random cell motility and activated immune 

cells move along the cytokine field (I2). The immune cell modules also account for cytotoxic 

effects of immune cells on contact due to antigen recognition (I3) and through the secretion of 

oxidizing agents (I4).  

Transport Modules 

T1 - Viral transport   

Viral particles are transported and eliminated by different mechanisms (e.g., ciliated active 

transport, diffusion) and media (e.g., air, mucus) at different physiological locations and through 

different types of tissue (e.g., nasopharyngeal track, lung bronchi and alveoli). This module 

models extracellular viral particles as a diffusive virus field in a thin layer above the apical surfaces 

of epithelial cells. Viral internalization results in the absorption of a small amount of virus from 

the extracellular environment into a cell (T1-E1). 

The change in concentration of the virus field 𝑐.)/  is calculated at each location in the simulation 

domain by solving the following reaction-diffusion equation, 

𝜕𝑐.)/(𝑥)
𝜕𝑡 = 𝐷.)/∇(𝑐.)/(𝑥) − 𝛾.)/𝑐.)/(𝑥) +

1
𝑣*𝜎(𝑥),

9𝑅𝑒𝑙𝑒𝑎𝑠𝑒*𝜎(𝑥), − 𝑈𝑝𝑡𝑎𝑘𝑒*𝜎(𝑥),; ( 2.10) 

Here 𝐷.)/  is the diffusion constant of the extracellular virus and 𝛾.)/  is the decay rate is the decay 

rate. Uptake and release by a cell at each location are determined using the viral internalization 

(E1) and the viral release (E3) modules and are uniformly applied over all sites of the domain of 

the cell.  

T2 - Cytokine Transport  
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Models diffusion and clearance of immune signaling molecules in the extracellular environment 

The immune response involves multiple signaling molecules acting upon different signaling 

pathways. We assume that the complexity of immune signaling can be functionally represented 

using a single chemical field that diffuses and decays in the extracellular environment. Once 

infected, epithelial cells secrete signaling molecules to alert the immune system (E2-T2). Local 

exposure to cytokine signaling results in activation of immune cells (T2-I1). Upon activation, 

immune cells migrate towards infection sites guided by the cytokine (T2-I2). Lastly, activated 

immune cells amplify the immune signal by secreting additional cytokines into the extracellular 

environment (I1-T2). We model cytokine systemic, long-range effects by assuming that cytokine 

exfiltrates tissues and is transported to immune recruitment sites (T2-L1).  

The change in concentration of the cytokine field 𝑐?"2 is obtained by solving a reaction-diffusion 

equation of the following general form,  

𝜕𝑐?"2
𝜕𝑡 = 𝐷?"2∇(𝑐?"2 − 𝛾?"2𝑐?"2 + 𝑠?"2 . ( 2.11 ) 

The decay term 𝛾?"2𝑐?"2 represents cytokine leaving the simulation domain (e.g., in immune 

recruitment). To model immune signaling, the rate of cytokine secretion is described by an 

increasing Hill function of 𝑐@)B*𝜎(𝑥), with Hill exponent ℎ?"2 = 2. The meaning of 𝑐@)B*𝜎(𝑥), 

depends on the cell type and the Hill exponent can differ for other cell types and states. The rate 

of cytokine secretion 𝑠?"2 is written as,  

𝑠?"2(𝑥, 𝑡) = 𝜎?"2*𝜏(𝜎(𝑥), 𝑡),
9𝑐@)B(𝜎(𝑥), 𝑡);

3+,#

9𝑐@)B(𝜎(𝑥), 𝑡);
3+,#

+ 9𝑉?"2*𝜏(𝜎(𝑥), 𝑡),;
3+,#

− 𝜔?"2*𝜏(𝜎(𝑥), 𝑡), (2.12) 
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Here 𝜎?"2*𝜏(𝜎(𝑥), 𝑡), is the maximum cytokine secretion rate for the cell type at 𝑥, 𝑐@)B*𝜎(𝑥), 

is a quantity that affects the cells cytokine secretion, 𝜔?"2*𝜏(𝜎(𝑥), 𝑡), is the cytokine uptake rate 

of the cell type at 𝑥 and 𝑉?"2*𝜏(𝜎(𝑥), 𝑡), is a dissociation coefficient of cytokine secretion for the 

cell type at 𝑥. 𝜎?"2 is nonzero for infected epithelial cells, virus-releasing epithelial cells and 

activated immune cells. For infected and virus-releasing epithelial cells 𝑐@)B is the amount of 

assembled virus 𝐴 in the viral replication module, and for activated immune cells 𝑐@)B is the total 

amount of cytokine in the domain of the cell. Similarly, for epithelial cells 𝑉?"2 is the amount of 

assembled virus, and for immune cells 𝑉?"2 is the amount of cytokine in the domain of the cell. 

𝜔?"2*𝜏(𝜎(𝑥), 𝑡), is constant and nonzero for activated and inactive immune cells.  

T3 - Oxidizing Agent Burst and Transport  

Models diffusion and clearance of a general oxidizing agent in the extracellular environment. One 

of the cytotoxic mechanisms of immune cells is the release of different oxidizing agents, reactive 

oxygen species like H2O2 and nitric oxide. The mechanism of action of such agents varies but we 

assume that we can generalize such effects by modeling a single diffusive and decaying oxidizing 

agent field in the extracellular environment. The oxidizing agent is secreted by activated immune 

cells after persistent exposure to cytokine signals (I4→T3). We assume that the range of action 

of the oxidizing agent is short. Cell death is induced in uninfected, infected and virus-releasing 

epithelial cells when exposed to sufficient oxidizing agent (T3→E4).  

The oxidizing agent field diffuses according to the reaction-diffusion equation,  

𝜕𝑐4#)
𝜕𝑡 = 𝐷4#)∇(𝑐4#) − 𝛾4#)𝑐4#) + 𝑠4#) . (2.10) 
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Bursts of oxidizing agent are implemented as a source term at a rate 𝜎4#). An oxidizing burst 

occurs in immune cells with an activated state when the total cytokine in the immune cell’s 

domain exceeds a threshold 𝜏4#)@>?. 

Immune Cell Modules 

The four processes I1-I4 capture immune cell functions which are defined below. These processes 

control how immune cells are activated, translocate, and kill other cells. Their interactions with 

epithelial cells and other model components are illustrated in Figure 2.5. 

 

Figure 2.5. State diagram and interactions of Immune cells. Immune cells can adopt two different 

generalized types: inactive and activated. Inactive immune cells are recruited by the cytokine levels 

according to the immune recruitment module (L1). Transition from inactive to activated immune cells is 

determined by the immune activation module (I1) when cells are exposed to cytokines in the tissue. 

Activated immune cells amplify the cytokine signal by secreting cytokines to the extracellular 

environment. Activated immune cells chemotax towards virus-releasing cells (I2). Immune cells induce 

death of epithelial cells by direct cytotoxicity when coming into contact with infected cells (I3), bystander 
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effect by killing neighbors of infected cells (I3) and through oxidative cytotoxicity (I4) by releasing cytotoxic 

oxidizing agents (T3) into the extracellular environment.  

I1 - Immune Cell Activation  

Models immune cell maturation due to cytokine signaling. Immune cells mature at the 

recruitment site before being transported to the infection site as inactive immune cells 

(L1→Immune Cells). After infiltration, immune cells need to be exposed to local cytokine signals 

before activating (T2→I1). Once activated, immune cells move along a gradient of the cytokine 

field (I2) and amplify immune signaling by releasing cytokine molecules into the extracellular 

environment (I1→T2). Immune cells can become deactivated after a period of activation (I1 and 

Fig 2C). Inactive immune cells become activated with a probability according to a Hill equation of 

the total cytokine bound to the cell 𝐵?"2(𝜎, 𝑡),  

Pr(𝜏(𝜎, 𝑡) → activated	immune|𝜏(𝜎, 𝑡) = inactive	immune)

=
9𝐵?"2(𝜎, 𝑡);

3%+#

9𝐵?"2(𝜎, 𝑡);
3%+#

+ *𝐸𝐶50?"28?2,
3%+#

. 
( 2.11 ) 

After ten hours, an activated immune cell becomes inactive, in which case evaluations of 

activation (Equation (15)) recommence. The immune cells “forget” a percentage (1 − 𝜌?"2) of the 

bound cytokine each time step while taking up an amount of cytokine from the environment 

(𝜔?"2(𝜏(𝜎), 𝑡) defined in T2), 

𝐵?"2(𝜎, 𝑡) = 𝜌?"2𝐵?"2(𝜎, 𝑡 − ∆𝑡) + 𝜔?"2*𝜏*𝜎(𝑥),, 𝑡,. ( 2.12 ) 

I2 - Immune Cell Chemotaxis  

Module I2 models activated immune cell chemotactic migration towards infection. Activated 

immune cells experience a motile force as a response to a signaling field. We assume that upon 
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activation (I1!I2), immune cells move preferentially towards higher concentrations of local 

cytokine (T2!I2). The chemotactic effective energy ℋ?3>7428#)@ associated with the gradient is 

calculated according to a chemotactic sensitivity parameter 𝜆?3>7428#)@ and calculated 

chemotactic force 𝐹?3>7428#)@. The chemotactic force at a location 𝑥 is saturated by normalizing 

the chemotactic sensitivity parameter by the concentration of cytokine at the center of mass of 

the cell at 𝑥, 𝑐?"2,CD*𝜎(𝑥),, 

𝐹?3>7428#)@(𝑥) =
𝜆?3>7428#)@

1 + 𝑐?"2,CD*𝜎(𝑥),
∇𝑐?"2(𝑥). (2.13) 

I3 - Immune Dell Direct Cytotoxicity and Bystander Effect  

Models immune cell cytotoxicity when immune cells (both activated and inactive) identify and 

induce death in epithelial cells. Immune cells identify epithelial cells with internal virus on contact 

by antigen recognition and induce cell death by activating the caspase cascade (I3!E4). Other 

epithelial cells in contact with an epithelial cell that is killed by direct cytotoxicity can die through 

a bystander effect. At each simulation step, immune cells trigger cell death in the infected and 

virus-releasing epithelial cells with which they come in contact. When an infected cell is killed by 

direct cytotoxicity, each of its first-order neighbors is evaluated for cell death by a bystander 

effect model. Each of those neighbors 𝜎′ ∈ 𝑁(𝜎) has a probability 𝑘E"@286F>/  of dying from the 

bystander effect given by, 

Pr(𝜏(𝜎G, 𝑡) → Dead|𝐷𝑖𝑟𝑒𝑐𝑡	𝐶𝑦𝑡𝑜𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦(𝜎) = True) = 𝑘E"@286F>/ 	∀𝜎G ∈ 𝑁(𝜎). ( 2.14 ) 

I4 - Immune Cell Oxidizing Agent Cytotoxicity  
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Models activated immune cell killing of target cells through the release of a diffusive and decaying 

oxidizing agent into the environment. Immune cells release a short-range, diffusive oxidizing 

agent when exposed to high cytokine concentration (T3). Cell death is induced in uninfected, 

infected, and virus-releasing epithelial cells when sufficiently exposed to the oxidizing agent 

(T3→E4). The oxidizing agent kills an epithelial cell of any type when the total amount of oxidizing 

agent in the domain of the cell 𝑐4#)(𝜎) exceeds a threshold for death 𝜏4#)F>823, 

Pr*𝜏(𝜎, 𝑡) → Dead|𝑐4#)(𝜎) > 𝜏4#)F>823, = 1. ( 2.15) 

Lymph Node Component 

The lymph node component models the net pro- or anti-inflammatory state of the immune 

system. It responds to cytokines received from the tissue and adds or removes immune cells from 

the tissue (L1). 

L1 - Immune Cell Recruitment  

Infected cells secrete signaling molecules into the extracellular environment (E2→T3), which 

alerts resident immune cells and recruits new immune cells from the blood, distant lymph nodes 

and bone marrow. Module L1 models immune cell recruitment and infiltration into the tissue in 

response to cytokine signaling by infected cells and activated immune cells. We model long-

distance signaling by assuming that cytokine molecules in the extracellular environment exfiltrate 

the infection site and are transported through the lymphatic system to the lymphatic system to 

lymph nodes and through the bloodstream to initiate immune-cell recruitment (T2→L1). A delay 

on the order of minutes to hours would represent semi-local recruitment (e.g., at the blood 

vessels). A delay on the order of days would represent long-range, systemic recruitment (e.g., 
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the time required for a dendritic cell to reach a lymph node and an induced T cell to return). 

Recruited immune cells are then transported and infiltrate the infection site (L1!Immune Cell). 

The total immune cell population is governed by an ordinary differential equation of a 

dimensionless state variable 𝑆 that represents immune response due to local conditions and 

long-distance signaling. When 𝑆 > 0, immune cells are recruited to the simulation domain; 

likewise, immune cells are removed from the simulation domain when 𝑆 < 0. Probability 

functions of 𝑆 describe the likelihood of immune cell seeding and removal,  

Pr(add	immune	cell) = erf(𝛼)7706>𝑆) , 𝑆 > 0, (2.16) 

Pr(remove	immune	cell) = erf(−𝛼)7706>𝑆) , 𝑆 < 0. (2.17) 

Here the coefficient 𝛼)7706>  is the sensitivity of immune cell addition and removal to the state 

variable 𝑆. The dynamics of 𝑆 are cast such that, in a homeostatic condition, a typical number of 

immune cells can be found in the simulation domain, and production of cytokine (T2) results in 

additional recruitment via long-distance signaling (i.e., with some delay). We model this 

homeostatic feature using the feedback mechanism of the total number of immune cells 

𝑁)7706>  in the simulation domain. Cytokine signaling is modeled as perturbing the homeostatic 

state using the term 𝛼@)B𝛿. Here 𝛿 is the total amount of decayed cytokine in the simulation 

domain and 𝛼@)B > 0 models signaling by transmission of cytokine to some far-away source of 

immune cells. We write the rate of change of 𝑆 as  

𝑑𝑆
𝑑𝑡 = 𝛽8FF − 𝛽@0E𝑁)7706> +

𝛼@)B
𝛽F>98"

𝛿 − 𝛽F>?8"𝑆. ( 1 ) 

Here 𝛽8FF  and 𝛽@0E control the number of immune cells in the simulation domain under 

homeostatic conditions. 𝛽F>98" controls the delay between transmission of the cytokine to the 
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lymph node and corresponding immune response by adjusting the rate of recruitment due to 

total cytokine (i.e., increasing 𝛽F>98" increases the resulting delay). 𝛽F>?8" regulates the return 

of 𝑆 to an unperturbed state (i.e., 𝑆 = 0, increasing 𝛽F>?8" increases the rate of return to 𝑆 = 0). 

To determine the seeding location, the simulation space is randomly sampled 𝑛@>>F)6B times, and 

an immune cell is seeded at the unoccupied location with the highest amount of the virus field. 

If no location is unoccupied, then the immune cell is not seeded. The removal probability is 

evaluated for each immune cell at each simulation step. Immune cells are removed by setting 

their volume constraint to zero.  

Initial and Boundary Conditions 

The domain of all simulations had dimensions of 90 x 90 x 2 lattice sites. The initial cell 

configuration consisted of a 30 x 30 sheet of uninfected epithelial cells, each of size 3 x 3, on the 

lower layer of lattice sites. Epithelial cells were “frozen”, in that they were immobile, leaving the 

remaining 90 x 90 subdomain for occupancy by recruited immune cells. For cellular dynamics and 

mass transport, periodic boundary conditions were applied in the plane of the epithelial sheet, 

and Neumann conditions were applied along the direction orthogonal to the epithelial sheet. All 

field values for the diffusive viral, cytokine and oxidizing agent fields were initialized as zero 

everywhere.  

At each first simulation step, the epithelial cell in the center of the sheet was set to infected, and 

the amount of internalized virus 𝑈 of the viral replication model was set to a value of one. All 

epithelial cells were initialized with a number of unbound surface receptors 𝑆𝑅 = 𝑅4. All immune 

cells, when introduced to the simulation by recruitment, were initialized in an inactive state, and 

with a bound cytokine value equal to zero (𝐵?"2 = 0). During transition of an uninfected epithelial 



 50 

cell to the infected type, all state variables of the viral replication model were initialized with a 

value of zero.  

Simulation Specifications  

A baseline parameter set was constructed for all CPM parameters and modules developed in this 

work (Table 2.1). Non-dimensionalization was performed on model parameters for a lattice 

dimension of 4 μm per pixel along each dimension, at 20 minutes (1/3 hours) per MCS. All replicas 

were simulated for ten trials, each 1,000 MCS (14 days) long. Simulation data was collected at a 

frequency of 10 MCSs (3 hours) for all simulations. 

Results 

To illustrate the full range of dynamics of viral infection in the presence of an immune response, 

we established a baseline set of parameters (Table 2.1) for which the immune response is strong 

enough to slow the spread of the infection, but insufficient to prevent widespread infection and 

death of all epithelial cells (Fig 6). While we adjusted the parameters for the viral replication 

model to agree with reported time scales for SARS-CoV-2 replication in vitro [70], and we have 

selected parameter values in physiologically reasonable ranges, we have not attempted to match 

other model parameters to a specific tissue, virus or host species. 
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Figure 2.6. Simulation of the progression of infection in a patch of epithelial tissue of size 360 μm x 360 

μm starting from a single infected cell for a representative simulation using the baseline parameters 

given in Table 2.1. A. Snapshots of spatial configuration vs time, showing progression of a simulated 

infection. Columns, left to right: 0 minutes (time of initial infection), 4000 minutes (67 hours, 2 ¾ days) 

after infection, 8000 minutes (133 hours, 5 ½ days), 12000 minutes (200 hours, 8 ⅓ days), 16000 minutes 

(267 hours, 11 days), and 20000 (333 hours, 14 days) minutes. First row: epithelial-cell layer composed of 

uninfected (blue), infected (green), virus-releasing (red) and dead epithelial cells (black). Second row: 

position of immune cells in the extracellular environment layer. Third row: concentration of extracellular 

virus field. Fourth row: concentration of extracellular cytokine field. Fifth row: concentration of 

extracellular oxidative agent field. Fields are shaded on a logarithmic scale: red corresponds to the chosen 

maximum value specified in the first panel and blue corresponds to six orders of magnitude lower than 

the maximum value; colors saturate for values outside this range. B-D. Simulation time series. B. Number 

of uninfected (orange), infected (green), virus-releasing (red) and dead (purple) epithelial cells vs time on 

a logarithmic scale. C. Total extracellular cytokine (magenta) and total extracellular virus (brown) vs time 

on a logarithmic scale. D. Value of the immune recruitment signal 𝑆	(yellow) and number of immune cells 

(grey) vs time on a linear scale. Simulations use periodic boundary conditions in the plane of the epithelial 

sheet, and Neumann conditions [61] normal to the epithelial sheet.  

Initially infected cell immediately starts releasing cytokines into the extracellular environment. 

After an incubation period (2 ½ hours), the first infected epithelial cell (green) transitions from 

infected to virus releasing and starts releasing viruses into the extracellular environment. Initial 

release of extracellular virus causes additional epithelial cells to become infected. Release of 

cytokines leads to delayed addition of immune cells to the simulation domain (Fig 2.6D). By 2 ¾ 

days, the number of infected cells increases 10-fold and the epithelial cells start undergoing 

virally-induced death as the infection spreads radially outward from the initial site. This results in 
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the formation of an annular region of infected cells spreading radially outwards from the initial 

infection site (Fig 2.6A), analogous to the Fisher equation for deterministic front propagation 

[62]. The increase in the number of infected cells and the local cytokine concentration is 

accompanied by a similar increase in the local immune cell population. By 5 ½ days, the number 

of dead epithelial cells around the initial infection site increases sharply. Following this phase of 

rapid cell death, the number of infected, virus-releasing and dead epithelial cells continues to 

increase exponentially but at a slower rate. Total extracellular virus and cytokine continue to 

increase exponentially. The increase in cytokine results in continued recruitment of immune cells. 

By 11 days, the number of uninfected epithelial cells reaches zero and the number of infected 

and virus-releasing cells peaks. Despite the declining number of infected and virus-releasing 

epithelial cells, the delayed immune response continues to add immune cells to the tissue. After 

11 days, the extracellular virus and the amount of cytokine decrease exponentially as the 

remaining virus-releasing epithelial cells die. By 14 days, all epithelial cells die, and many immune 

cells leave the tissue.  

Classification Of Spatiotemporal Infection Dynamics 

The rate at which infection propagates and the strength (speed and amplitude) of the immune 

response depend on multiple model parameters. Interplay between these rates leads to a wide 

spectrum of qualitatively distinct spatiotemporal dynamics. The virus-receptor binding affinity 

𝑘46 and the immune response delay coefficient 𝛽F>98"	are critical parameters affecting the rate 

of infection of epithelial cells and the strength of the immune response, respectively. Increasing 

𝑘46 increases the rate of internalization of extracellular viral particles into epithelial cells. 

Decreasing 𝛽F>98" increases the strength of immune-cell recruitment.  
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Varying these two parameters around the baseline simulation values yields six patterns of 

spatiotemporal infection dynamics, ranging from unopposed infection to clearance (Fig 2.7). We 

defined these classes based on the transient dynamics and the final state of the simulation at 14 

days. We define the six patterns (classes) of infection dynamics as follows: 

No immune response: a limiting case (corresponding to in vitro and organoid culture experiments 

on viral infection, which lack immune cells) that serves as a reference simulation showing the 

spread of unopposed infection. When the cellular immune response is absent, an infection front 

travels across the epithelium until all epithelial cells have died due to intracellular virus (Fig 2.7A).  

Widespread infection: when the immune response is weak (large 𝛽F>98") or the rate of infection 

propagation is large (large 𝑘46), the immune cannot prevent the propagation of the infection 

front. No uninfected epithelial cells survive at the end of the simulation (Figs 2.7B). 

Slowed infection: for moderate immune response (moderate 𝛽F>98") and a moderate rate of 

infection propagation (moderate 𝑘46), both uninfected and infected epithelial cells and some 

extracellular virus remain at the end of the simulation (Fig 2.7C). These cases are functionally 

distinct from widespread infection, since even a single remaining uninfected epithelial cell could 

initiate tissue regeneration. In most cases of slowed infection, the numbers of infected cells and 

the extracellular virus continue to increase. A special case of slowed infection occurs when 

oscillations in the amount of virus. 

Containment: for strong immune response (small 𝛽F>98") and low to moderate rate of infection 

propagation (moderate 𝑘46), a few infected and virus-releasing cells are present for most of the 

simulation. However, the immune cells eventually kill all infected and virus-releasing epithelial 
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cells. At the end of the simulation, no infected or virus releasing cells remain, while uninfected 

cells survive, and some extracellular virus remains in the extracellular environment (Fig 2.7D). 

Recurrence: for strong immune response (small 𝛽F>98") and a fast infection propagation (large 

𝑘46), relatively few epithelial cells become infected early in the simulation. All infected and virus-

releasing epithelial cells die. However, the remaining extracellular virus infects additional 

epithelial cells later, restarting the spread of infection (Fig 2.7E). 

Clearance: for strong immune response (small 𝛽F>98"	) and a slow infection propagation (small 

𝑘46), the number of infected and virus-releasing epithelial cells goes to zero without recurrence 

and the extracellular virus drops rendering the frequency of recurrence negligible (Fig 2.7F). A 

special case of clearance occurs when the initially infected epithelial cells fail to infect any other 

epithelial cells.  

To quantitatively characterize simulation results, we measured the number of uninfected, 

infected, virus-releasing and dead epithelial cells, the total number of immune cells, the number 

of activated immune cells, the total amount of extracellular virus (integral over the virus field), 

the total diffusive cytokine (integral over cytokine field), the maximum total extracellular virus 

(over all simulation time) and the maximum total diffusive cytokine (over all simulation time). Fig 

2.7 shows these quantitative metrics, together with a series of spatial configurations for all model 

components, corresponding to each pattern of infection dynamics. 
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Figure 2.7. Patterns (Classes) Of Spatiotemporal Infection Dynamics. First row: snapshots of spatial 

configurations of the epithelial cells. Color coded: uninfected (blue), infected (green), virus releasing (red), 

dead (black). TImes from left to right 2 ¾, 5 ½, 8 ⅓, 11 and 14 days. Second row: number of uninfected 

(orange), infected (green), virus-releasing (red) and dead (purple) epithelial cells vs time on a logarithmic 

scale (with 0 included for clarity). Third row: total extracellular cytokine (magenta) and total extracellular 

virus (brown) vs time on a logarithmic scale. Fourth row: value of the immune recruitment signal 𝑆 

(yellow) and number of immune cells (grey) vs time on a linear scale. A. No immune response: infection 

propagates unopposed until all epithelial cells have died from intracellular virus. B. Widespread infection: 
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weak immune response slows propagation of the infection, but no uninfected cells survive at the end of 

the simulation. C. Slowed infection: uninfected and infected epithelial cells coexist at the end of the 

simulation. E. Containment of infection: no infected or virus-releasing epithelial cells remain, uninfected 

cells survive and virus remains in the extracellular environment at the end of the simulation. F. 

Recurrence: the number of infected and virus releasing epithelial cells goes to zero, but persistent 

extracellular virus infects new epithelial cells later on. G. Clearance: the number of infected and virus-

releasing epithelial cells goes to zero and the level of extracellular virus is negligible at the end of the 

simulation. 

Stronger Immune Response And Lower Rates Of Virus Internalization Promote Containment Of 

Infection 

To explore tradeoffs between the rate of virus internalization and the strength of the immune 

response, we performed a multidimensional parameter sweep of the virus-receptor association 

affinity 𝑘46 and immune response delay coefficient 𝛽F>98". Variations in virus receptor 

association affinity represent factors that affect the binding affinity of cellular viral receptors 

(e.g., ACE2 and TMPRSS-2 in the case of SARS-CoV-2) with a virus (e.g., mutations in viral coat 

protein or drugs to block viral entry). Variations in immune response delay coefficient represent 

factors that affect the strength of the systemic immune response (e.g., anti-inflammatory 

corticosteroids, IL-7 treatment or age, since older individuals tend to have slower adaptive 

immune responses).  

We ran ten simulation replicas for each parameter set, increasing and decreasing the baseline 

parameter values 10-fold and 100-fold (Figs 2.8-2.10). For each simulation replica, we examined 

the number of uninfected epithelial cells (Fig 2.8), the number of infected epithelial cells (Fig 2.9), 

the total extracellular virus (Fig 2.10). We identified regions of the parameter space where all ten 
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simulation replicas resulted in either containment/clearance (green-shaded subplots) or 

widespread infection (orange-shaded subplots). In the intermediate regions (unshaded subplots) 

different replicas for the same set of parameters showed combinations of the different classes 

of infection dynamics.  

 

Figure 2.8. Global Logarithmic Sensitivity analysis of the number of uninfected epithelial cells vs time 

for variations in virus-receptor association affinity 𝒌𝒐𝒏 and immune response delay coefficient 𝛽#$%&', 

showing regions with distinct infection dynamics. Logarithmic pairwise parameter sweep of the virus-

receptor association affinity 𝑘() and the immune response delay 𝛽#$%&' around their baseline values, with 

ten simulation replicas per parameter set. The number of uninfected epithelial cells for each simulation 

replica for each parameter set, plotted on a logarithmic scale, vs time. 

For large 𝑘46 and large 𝛽F>98" (Figs 2.8-2.10, orange-shaded regions), simulation replicas result 

in widespread infection and variability between simulation replicas is small. In this region, the 

initial release of virus into the extracellular environment results in a rapid increase in the number 
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of infected and virus releasing epithelial cells early during the simulation (Figs 2.9). After 3 ½ days, 

the number of uninfected epithelial cells rapidly decays to zero. Because of the large 𝛽F>98", the 

immune recruitment signal is less responsive to the cytokine signal produced by infected and 

virus-releasing epithelial cells and no significant recruitment of immune cells occurs throughout 

the simulations. The number of virus-releasing epithelial cells peaks around 5 days, the level of 

extracellular virus peaks 6 ¼ days and the number of dead epithelial cells peaks around 7 days. 

With no remaining uninfected epithelial cells to infect, all remaining infected die, causing the 

total amount of extracellular virus to decrease.  

 

Figure 2.9. Global Logarithmic Sensitivity analysis of the number of infected epithelial cells vs time for 

variations in virus-receptor association affinity 𝒌𝒐𝒏 and immune response delay coefficient 𝛽#$%&', 

showing regions with distinct infection dynamics. The number of infected epithelial cells for each 

simulation replica for each parameter set, plotted on a logarithmic scale, vs time displayed in minutes. 
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For small 𝑘46 and small 𝛽F>98"	(Figs 2.8-2.10, green-shaded subplots), simulation replicas result 

in either clearance or containment and variability between simulation replicas is also small. Initial 

release of virus to the extracellular environment results in a small decrease in the number of 

uninfected cells and increase in the number of infected epithelial cells. Because of the small 

𝛽F>98", the immune recruitment signal is very sensitive to the cytokine produced by infected cells, 

resulting in rapid recruitment of immune cells and an early first peak in the population of immune 

cells around 1 ⅓ days. The increase in the number of immune cells is followed by a rapid increase 

in the number of dead epithelial cells. The number of immune cells and the number of dead 

epithelial cells peak around 1 ⅓ days, after which the number of immune cells decreases. With 

no remaining infected cells, the total extracellular virus decays until the infection is cleared. 

 

 

Figure 2.10. Global Logarithmic Sensitivity analysis of the total amount of extracellular virus vs time for 

variations in virus-receptor association affinity 𝒌𝒐𝒏 and immune response delay coefficient 𝛽#$%&', 
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showing regions with distinct infection dynamics. The total amount of extracellular virus for each 

simulation replica for each parameter set, plotted on a logarithmic scale, vs time displayed in minutes.  

For moderate to high 𝑘46 and moderate to low 𝛽F>98" (right unshaded subplots in Figs 2.8-2.10), 

the rate of new infection nearly balances the rate of elimination of cells, resulting in replicas 

showing clearance, contaminant, recurrence and slowed infection for the same parameter 

values, with very few cases of widespread infection. The initial release of virus into the 

extracellular environment by the first virus-releasing cells infects a moderate number of 

uninfected cells. The resulting cytokine secretion elicits a moderate to high response of the 

immune recruitment signal and high number of immune cells. Early recruitment of immune cells 

leads to many epithelial cells dying by 2 ⅔ days. For high rate of virus internalization (high 𝑘46), 

low amounts of extracellular virus are sufficient to cause recurrence.  

For moderate to low 𝑘46 and moderate to high 𝛽F>98" (upper left unshaded subplots in Figs 2.8-

2.10), the rate of new infection is slightly faster than the immune system’s response, resulting in 

a combination of widespread infection, slowed infection and containment, and a few cases of 

clearance. The immune system is only moderately responsive to the cytokine signal, resulting in 

a slow to moderate increase in the immune recruitment signal and in the number of immune 

cells.  

Moderate Inhibition Of Genomic Replication By Antiviral Therapies Significantly Reduces The 

Spread Of Infection When Initiated Early During Infection 

Optimal therapeutic use of antiviral drugs requires considering the relationship between 

molecular efficacy (how effectively the drug blocks a particular aspect of the viral life cycle at 

saturation concentration), potency of therapy (the effect of the drug at a molecular level at a 
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given dose) and clinical effectiveness (how well the drug reduces the severity or duration of the 

infection), as well as the tradeoff between side effects and bioavailability. One drug might have 

moderate efficacy but have few side effects. Another drug might have high efficacy but have 

severe side effects. A drug might also have a combination of beneficial and adverse effects (e.g., 

it might reduce viral replication early in infection, but also be immunosuppressive). Antiviral 

drugs like Tamiflu retain their ability to block aspects of the viral life cycle (efficacy) but become 

much less clinically effective as the time for treatment increases (in adults Tamiflu is most 

effective when given within 48 hours after exposure and thus is often used prophylactically) [52].  

To simulate the effects of treatment that targets RNA synthesis using different drug efficacies 

and times of administration, we generated a series of simulations in which we reduced 𝑟78# , the 

replication rate of genomic material in the viral replication model by different amounts and at 

different times in the simulation. We focus on RNA-synthesis blockers because viral genome 

synthesis exponentially increases the production rate of viruses per cell. The “viral replication 

multiplier” represents the potency of the treatment, the factor by which 𝑟78# is reduced (either 

a low dose with high efficacy, or a high dose with a less efficacy). The “time delay of application” 

is the simulation time at which 𝑟78# is reduced, which corresponds to the time after infection at 

which the treatment is administered. To characterize therapeutic effectiveness, we distinguished 

three classes of simulation outcomes: 

Positive outcomes: effective treatment, where at least 50% of the epithelial cells remain 

uninfected at the end of the simulation (green-shaded subplots). 

Negative outcomes: ineffective treatment, where less than 10% of the epithelial cells remain 

uninfected at the end of the simulation (orange-shaded subplots). 
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Intermediate outcomes: partially effective treatment, where between 10-50% of the epithelial 

cells remain uninfected at the end of the simulation (unshaded or intermediate-shaded subplots). 

To characterize how the potency and time of treatment affect the dynamics of the simulation, 

we examined the time courses of the number of uninfected epithelial cells (Fig 2.11), virus-

releasing epithelial cells (Fig 2.12), the total amount of extracellular virus (Fig 2.13), the number 

of dead epithelial cells and the number of immune cells. Intensity of green indicates the percent 

of simulation replicas that produced positive outcomes for a given set of parameters. Intensity 

of orange indicates the percent of simulation replicas that produced negative outcomes.  
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Figure 2.11. Number of uninfected cells vs time in simulations of a hypothetical drug treatment reducing 

the viral genome (e.g. RNA for SARS-CoV-2) replication rate (𝑟*&+) as a function of treatment potency 

and time of initiation of treatment. Drug therapy is administered at a fixed time after infection and 

remains activated for the duration of the simulation. A. Sample treatment, showing the time course of 

𝑟*&+. 𝑟*&+ is reduced by a multiplier which is one minus the potency of the drug at the given dose, 75% 

in A, at a particular time of initiation of treatment (time delay of application) 8 ⅓ days in A. B. Parameter 

sweep of the potency of treatment (reduction in baseline viral replication rate 𝑟*&+, vertical) and the time 

of treatment (dashed lines, horizontal) shows parameter regions where the majority of simulation replicas 

produce positive outcomes (green-shaded subplots), negative outcomes (orange-shaded subplots) and 

intermediate cases (intermediate shading or unshaded). Intensity of green and orange indicates the 

number of positive and negative outcome replicas for each parameter combination (treatment 

effectiveness). Green regions show that early intervention leads to positive outcomes (is effective) for 

most ranges of treatment potency, with high numbers of uninfected epithelial cells at the end of the 

simulation for almost all simulation replicas. Orange regions show that late interventions result in mostly 

negative outcomes (ineffective treatment) regardless of the potency, and that outcomes are more 

variable between replicas, with both positive and negative outcomes for most parameter sets. The 

number of uninfected epithelial cells for each simulation replica for each parameter set, plotted on a 

logarithmic scale, vs time displayed in minutes. 

When treatment is given early, most of the simulation replica outcomes are positive. If the drug 

is administered prophylactically or very soon after infection the treatment potency needs to be 

only 25% to achieve mostly positive outcomes. Increasing the time to treatment increases the 

potency required to achieve similar numbers of positive outcomes: the treatment is effective for 

a potency of at least 37.5% if administered by 2 ¾ days, and at least 87.5% if administered 4 days. 

For all potencies greater than 12.5%, early intervention prevents significant increase in the 



 65 

number of infected cells (Fig 2.12, green-shaded subplots), and a small number of immune cells 

is sufficient to stop the spread of infection. In this region, delaying treatment results both in a 

higher level of extracellular virus (Fig 2.13, green-shaded subplots) and more dead epithelial cells 

at the end of simulation. With inhibited viral replication, the extracellular virus decays until it is 

mostly cleared by the end of simulation (Fig 2.13). Variability between simulation replicas for a 

given parameter set increases with both decreasing potency and increasing time of initiation of 

treatment.  

 

 

Figure 2.12. Number of virus releasing cells vs time in simulations of a hypothetical drug treatment 

reducing the viral genome (e.g. RNA for SARS-CoV-2) replication rate (𝑟*&+) as a function of treatment 

potency (one minus the viral replication rate multiplier) and time of initiation of treatment. The number 

of virus-releasing epithelial cells stays low when the intervention occurs early during infection (when the 
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amount of extracellular virus is increasing rapidly), but continues to increase when the intervention occurs 

later (when the level of extracellular virus is at or near its maximum in the untreated case).  

If the potency of the treatment is less than 12.5%, most of the simulation replicas have negative 

outcomes even if the drug is administered early (Figs 2.11-2.13, bottom row). In these cases, the 

time after infection at which the drug is given makes no significant difference. When the 

treatment is given late (after 7 days), regardless of the potency of the drug, most simulation 

replicas have negative outcomes (Figs 2.11-2.13, orange-shaded regions). By the time of 

treatment, a significant number of cells have been infected (Fig 2.11, orange-shaded regions) and 

a significant amount of virus has been released into the extracellular environment (Fig 2.12, 

orange-shaded regions). In addition, a significant number of epithelial cells have died and 

significant recruitment of immune cells has occurred. For higher treatment potency, the level of 

extracellular virus starts decreasing immediately after treatment, even when a significant 

number of virus-releasing epithelial cells remain, indicating that viral replication inside cells has 

been significantly reduced. Later intervention also increases variability between simulation 

replicas and, although most simulation replicas have negative outcomes, the same set of 

parameter values produced two distinct qualitative outcomes (some more and some less 

favorable) for higher potency. Thus in a few cases, even late treatment can be effective. 
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Figure 2.13. Levels of extracellular virus vs time in simulations of a hypothetical drug treatment reducing 

the viral genome (e.g. RNA for SARS-CoV-2) replication rate (𝑟*&+) as a function of drug potency (one 

minus the viral replication rate multiplier) and time of initiation of treatment. Extracellular virus is 

cleared or near-cleared when intervention occurs soon after infection. Parameter values, axis types and 

time-scale and shading as in Fig 8. 

When treatment is given at intermediate times (4 to 7 days), most simulation replicas have 

intermediate outcomes. For potencies above 50%, the fraction of uninfected epithelial cells at 

the end of simulation is relatively and the treatment is usually moderately effective (Fig 2.11). 

For potencies below 50%, the infected cells remain approximately constant or continues to 

increase after treatment (Fig 2.12) and significant levels of extracellular virus remain at the end 

of the simulation (Fig 2.13). In most cases the treatment is ineffective. Variability between 

outcomes for the same parameter values is higher than for potencies above 50%. 
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Discussion 

Our spatial, multicellular model of primary acute viral infection of an epithelial tissue includes 

key aspects of viral infection, viral replication, and immune response. By investigating sensitivity 

to model parameters and simulating drug therapies, we identified six distinct spatiotemporal 

classes of infection dynamics based on the model’s transient behaviors and final simulation 

outcomes. Each of classes corresponds to biologically or clinically observable outcomes. No 

immune response represents in vitro experiments (e.g., organoids). Widespread infection 

corresponds to an infection that is likely to spread to surrounding tissue and cause major tissue 

damage. Slowed infection corresponds to an initial infection whose spread is more likely to be 

eliminated by the adaptive immune response. Containment corresponds to immune-cell 

elimination of all infected cells but where remaining extracellular virus could result in new sites 

of infection elsewhere. Recurrence corresponds to the situation when new lesions form within 

the observed tissue patch. Clearance corresponds to immune-cell-based elimination of all 

infected cells and extracellular virus (classical viral clearance).  

We showed that key parameters of the model, such as those affecting viral internalization (i.e., 

virus-receptor association affinity 𝑘46), can lead to both containment/clearance (e.g., small 𝑘46, 

Figs 2.5-2.7) or widespread infection (e.g., large 𝑘46, Figs 2.5-2.7). Multidimensional parameter 

sweeps showed how the interplay between immune response (e.g. immune response delay 

coefficient 𝛽F>98") and viral spread could lead to widespread infection (e.g., large 𝛽F>98", large 

𝑘46, Figs 2.5-2.7), rapidly cleared infection (e.g., small 𝛽F>98", small 𝑘46, Figs 2.5-2.7) or 

containment/clearance after substantial damage (e.g., small 𝛽F>98", moderate 𝑘46, Figs 2.5-2.7). 

Some of these outcomes would be expected biologically (e.g., very fast internalization with a 
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slow immune response is likely to lead to widespread infection; faster and stronger immune 

responses should control the spread of viral infection within the tissue. Others, like the 

coexistence of replicas with containment/clearance or failure to control for the same parameter 

set, are less expected, and could not occur in a deterministic non-spatial model (though they 

might occur in some stochastic non-spatial models).  

We studied the influence of timing and potency of an RNA-polymerization inhibitor on the spread 

of viral infection within tissue (Figs 2.9-2.11). In the model, drugs with this mode of action can 

improve viral control in tissue if administered prophylactically at high potency, and their 

effectiveness decreases the later they are administered. Less obviously, the lower-left region of 

Figs 2.9-2.11 shows how therapies with even reduced potency could control the infection when 

administered sufficiently early. While we expect prophylactic or early treatment at the same 

potency to be more effective than later treatment, our model suggests that time of treatment is 

a more significant factor than potency in determining the effectiveness of the therapy. Our model 

thus suggests that drugs that interfere with virus replication are significantly more effective if 

used even at very low doses prophylactically than they would be if used even at a high dose as a 

treatment given later after exposure. Specifically, a prophylactic treatment in simulation which 

reduces the rate of viral RNA synthesis by only 35% is more effective than a treatment with 100% 

potency given two and a half days after infection and has about the same efficacy as a treatment 

with 50% potency given one day after infection.  

Differences in spatiotemporal dynamics and variability of outcomes critically depend on the 

ability of the model to resolve the spread of virus and immune response spatially. Since the viral 

replication module is deterministic, the primary cause of this difference in simulation outcomes 
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for the same set of parameter values is the spatial distribution of cells. Spatial structure (e.g., 

infection of neighboring cells), stochastic events (e.g., early cell death of infected cells before 

significant virus release) and cell-to-cell variation (e.g., difference in viral release between cells) 

all affect the variation between replicas. The spectrum of outcomes in our parameter sweeps 

(Figs 8-10 and 11-13) depends on the emergent spatial patterns of cytokine and virus fields (e.g., 

variations within the infection front expose different numbers of uninfected epithelial cells to the 

immune response).  

Future perspectives 

Our modeling framework can improve with the inclusion of additional cellular and immune 

mechanisms. Modules accounting for viral clearance, tissue recovery and persistent adaptive 

immune response can also be added to the framework. The current immune model does not 

include important signaling factors (e.g., interferon-induced viral resistance in epithelial cells) 

and the different roles of tissue-local and systemic signals (e.g., various cytokines). It also omits 

many cell types associated with both innate and adaptive immune response and their roles (e.g., 

viral scavenging by macrophages, relaying and amplification of immune signals by dendritic cells). 

The specific roles of different immune cell phenotypes must be incorporated because the timing 

of their activities can be quite different (e.g., early neutrophil release of oxidative agent 

contrasted with later effector T-cell contact-mediated killing). The model does not currently 

consider the production and role of antibodies in the humoral immune response or tissue 

recovery after damage. The model also greatly simplifies the structure of the epithelium and its 

environment, but could be easily generalized to a detailed, three-dimensional geometry, albeit 

at the cost of computational performance. 
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The immune response to viral infection depends on locus of infection, degree of infection and 

patient immune state. Understanding the reasons for immune failure to contain infection, or 

pathological responses like cytokine storms or sepsis, requires models of immune response at 

multiple locations and scales. The same is true for understanding and predicting the possible 

protective or adverse effects of coinfection. We can also study the systemic effects of possible 

therapies with known molecular modes of action. Evaluating therapies in a simulated context 

prior to performing animal or human trials could lead to more effective and rapid drug discovery 

and to optimized dosage and timing of treatments. Understanding the origins of population 

variability in disease progression is crucial to providing optimal personalized treatment. While 

the simulations presented here begin with a single infected cell, a simulation which begins with 

multiple infected cells might better represent the infection dynamics of patients that have been 

subject to high level exposure, such as healthcare workers. Factors such as hypertension, 

immunosuppression and diabetes affect tissue state and immune response and could also be 

incorporated into our model. More detailed studies of these factors using our model could reveal 

more about the effects of population variability (due to age, genetic variation, prior drug 

treatment or immune status) on disease progression. Such computational studies could be 

accomplished using concomitant, calibrated ODE-based simulations of COVID-19 treatment.  

The COVID-19 crisis has shown that drug discovery and therapy development both require new 

predictive capabilities that improve their effectiveness and efficiency. We have developed our 

framework to explore the relationship between molecular, cellular-level and systemic 

mechanisms and outcomes of acute viral infections like SARS-CoV-2, and to support development 

of optimal, patient-specific treatments to combat existing and new viruses. 
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Conversion Factors Value References / Justification 

Simulation step ∆𝑡 1200.0 s Selected for approximately 14 days 
of simulation time in 1k simulation 
steps 

Lattice width 4.0 μm Selected according to cell diameter 

Scale factor for concentration 1×10-14 mol Selected for conversion from mol L-

1 to mol μm-1 (10-15) with 10x 
adjustment for fewer 
concentrations less than 1 

Simulation parameters Value References / Justification 

Cell diameter 12.0 μm Selected according to typical 
epithelial cell size 

Replication rate 𝑟*&+ (1/12)×10-3 s-1  Calibrated to timescale of SARS-
CoV-2 [60] 

Translating rate 𝑟, (1/18)×10-3 s-1  Calibrated to timescale of SARS-
CoV-2 [60] 

Unpacking rate 𝑟- (1/6)×10-3 s-1  Calibrated to timescale of SARS-
CoV-2 [60] 

Packaging rate 𝑟. (1/6)×10-3 s-1  Calibrated to timescale of SARS-
CoV-2 [60] 

Release rate 𝑟/ (1/6)×10-3 s-1  Calibrated to timescale of SARS-
CoV-2 60] 

Scale factor for number of mRNA per 
infected cell 𝑚𝑅𝑁𝐴&01 

1000 cell-1 Selected for average production of 
2000 virions per cell before death 
per influenza [70] 

Viral dissociation coefficient 𝑟2&%3 2000 Derived from 𝑚𝑅𝑁𝐴&01, 𝑟*&+ and 
𝑟, 

Viral diffusion coefficient 𝐷045  0.01 μm2 s-1 Selected according to sensitivity 
analysis and estimated from 
physiological ranges for lung 
mucus1 

Viral diffusion length 𝜆045   36 μm Selected according to sensitivity 
analysis 

Viral decay rate 𝛾045   7.71×10-6 s-1  Derived from 𝜆045  and 𝐷045  
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Cytokine diffusion coefficient 𝐷6',  0.16 μm2 s-1 [67] (IL-2 cytokine) 

Cytokine diffusion length 𝜆6',  100 μm [65] (IL-2 cytokine) 

Cytokine decay rate 𝛾6',  1.32×10-5 s-1  Derived from 𝜆6', and 𝐷6', 

Maximum cytokine immune secretion rate 
𝜎6',(𝑖𝑚𝑚𝑢𝑛𝑒	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑) 

3.5×10-4 pM s-1 Estimated as 1/10 of 
𝜎6',(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑)  

Immune secretion midpoint 
𝑉6',(𝑖𝑚𝑚𝑢𝑛𝑒	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑) 

1 pM [66] 

Cytokine immune uptake rate 
𝜔6',(𝑖𝑚𝑚𝑢𝑛𝑒	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑) 

3.5×10-4 pM s-1 [65] 

Maximum cytokine infected cell secretion 
rate 𝜎6',(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑) 

3.5×10-3 pM s-1 [65] 

Infected cell cytokine secretion mid-point 
𝑉6',(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑), 𝑉6',(𝑣𝑖𝑟𝑢𝑠	𝑟𝑒𝑙𝑒𝑎𝑠𝑖𝑛𝑔) 

0.1  Chosen from typical simulation 
values of assembled virus. Values 
stay around 0.1 and increase as 
infection progresses 

Cytokine secretion Hill coefficient ℎ6', 2 Selected for simplest form with 
inflection of model response 

Immune cell cytokine activation 𝐸𝐶506',,&6, 10 pM [65] 

Immune cell equilibrium bound cytokine 
𝐸𝑄68 

210 pM Chosen to be 2.1 x 𝐸𝐶506',,&6, 

Immune cell bound cytokine memory 𝜌6', 0.99998 s-1 Derived from 
𝜔6',(𝑖𝑚𝑚𝑢𝑛𝑒	𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑) and 
𝐸𝑄68 

Immune cell activated time 10 h [34] 

Oxidation Agent diffusion coefficient 𝐷(+4   0.64 μm2 s-1 Selected to be 4 x 𝐷6', to model 
high diffusivity relative to IL-2 

Oxidation Agent diffusion length 𝜆(+4  36 μm Selected to be 3 cell diameters to 
model high reactivity 

Oxidation Agent decay rate 𝛾(+4  1.32×10-5 s-1  Derived from 𝜆(+4  and 𝐷(+4  

Immune cell oxidation agent secretion rate 
𝜎(+4  

3.5×10-3 pM s-1 Selected to be the same as 
𝜎6',(𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑) 
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Immune cell 𝐶6', threshold for Oxidation 
Agent release 𝜏(+4/$6  

10 A.U. = 1.5625 
pM 

Selected according to sensitivity 
analysis 

Tissue cell 𝐶(+4threshold for death 𝜏(+4#$&,2 1.5 A.U. = 
0.234375 pM 

Selected according to sensitivity 
analysis 

Initial density of unbound cell surface 
receptors 𝑅( 

200 cell-1  Selected for potential limiting 
factor (availability of receptors) 
from typical simulation 
extracellular virus field values 

Virus-receptor association affinity 𝑘() 1.4×104 M-1s-1 [68]  

Virus-receptor dissociation affinity 𝑘(33 1.4×10-4 s-1 [68] 

Infection threshold 1 Calibrated to timescale of SARS-
CoV-2 [60] 

Uptake Hill coefficient ℎ-.,  2 Selected for simplest form with 
inflection of model response 

Uptake characteristic time constant 𝛼-., 20 min Selected to be the same as ∆𝑡 

Virally-induced apoptosis Hill coefficient 
ℎ&.(  

2 Selected for simplest form with 
inflection of model response 

Virally-induced apoptosis dissociation 
coefficient 𝑉&.(  

100 Selected according to sensitivity 
analysis 

Virally-induced apoptosis characteristic time 
constant 𝛼&.( 

20 min Selected to be the same as ∆𝑡 

Immune cell activation Hill coefficient ℎ&6,  2 Selected for simplest form with 
inflection of model response 

Immune response add immune cell 
coefficient 𝛽&##   

1/1200 s-1  Selected for sensitivity analysis of 
𝛽#$%&' 

Immune response subtract immune cell 
coefficient 𝛽/-9 

1/6000 cell-1 s-1  Selected according to 𝛽&##  for 5 
resident immune cells (mean of all 
immune cell counts per epithelial 
cell from Control in [47] applied to 
900 epithelial cells) 

Immune response delay coefficient 𝛽#$%&'  1.2×106 s  Selected according to sensitivity 
analysis 

Immune response decay coefficient 𝛽#$6&'  1/12000 s-1  Selected for sensitivity analysis of 
𝛽#$%&' 
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Immune response cytokine transmission 
coefficient 𝛼/41  

0.5 Selected for sensitivity analysis of 
𝛽#$%&' 

Immune response probability scaling 
coefficient 𝛼4**-)$  

0.01 Selected for sensitivity analysis of 
𝛽#$%&' 

Number of immune cell seeding samples 
𝑛/$$#4)1  

10 Selected for sensitivity analysis of 
𝛽#$%&' 

Initial target volume 64 μm3  Derived from cell diameter and 
lattice width 

Lambda volume 𝜆0(%-*$ 9 Selected for acceptable 
deformation of immune cells 

Initial number of immune cells 0 Selected to demonstrate model 
feature of resident immune cells 

Lambda chemotaxis 𝜆62$*(,&+4/ 1 Selected for appreciable 
chemotaxis without excessive cell 
deformation 

Intrinsic Random Motility ℋ∗  10 [64] 

Contact coefficients 𝐽 (all interfaces) 10 Selected comparably to [31] for low 
adhesion immune cell-immune cell 
and immune cell-medium 
interfaces 

Table 2.1. Parameter values in baseline parameter set. 1 The diffusivity in water for a virus of radius 0.1 

microns like SARS-CoV-2 according to Stokes-Einstein is about 3 microns2/s. The average steady-shear 

viscosity for lung mucus varies significantly and is shear thinning, but in the more viscous regions is found 

to vary for frequencies between 10-4 and 102 Hz, spanning viscosity values as high as 103 Pa-s and as low 

as 10-2 Pa-s. In general, at low shear rates, the viscosity of human mucus is as high as 104−106 times that 

of water [69]. Thus the minimal diffusion constant possible would be 3 x 10-6 microns2/s and the maximal 

rate in water would be 3 microns2/s. 0.01 microns2/s is a reasonable geometric interpolation.  
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Multicellular Spatial Model of RNA Virus Replication and Interferon Responses Reveals 

Factors Controlling Plaque Growth Dynamics 

Introduction 

Respiratory viruses present major public health challenges, as evidenced by the 1918 Spanish Flu, 

the 1957 H2N2, 1968 H3N2, and 2009 H1N1 influenza pandemics, and the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Typical seasonal influenza virus 

strains are responsible for 290,000 – 650,000 annual deaths globally [71], and occasional, highly 

pathogenic pandemic strains, such as the 1918 Spanish Flu [72], and the 1957 H2N2 [73], 1968 

H3N2 [74], and 2009 H1N1 [76] influenzas result in significantly higher mortality rates. 

Severe RNA virus respiratory infections often correlate with high viral load and excessive 

inflammation. Both influenza and SARS-CoV-2 are RNA viruses, and studies of severe SARS-CoV-

2 and influenza infections find that impaired interferon responses correlate with more severe 

outcomes [76]. In some severe cases, respiratory diseases trigger a severe inflammatory 

condition known as a cytokine storm. In highly pathogenic infections, an aberrant inflammatory 

response – specifically a prolonged, elevated inflammatory state and a high level of type-I 

interferons in the bloodstream, clinically called hypercytokinemia (colloquially known as a 

cytokine storm) [77] – is believed to be a significant driver of mortality [78]. Excessive 

inflammation exacerbates tissue damage and hinders clinical recovery [79].  Understanding the 

dynamics of the innate immune response at the cell and tissue levels is vital to understanding the 

mechanisms of immunopathology and to developing strain-independent treatments.  

Influenza studies show that immunomodulation can improve infection outcomes. Prestimulation 

of toll-like receptors to induce earlier interferon production protects against highly pathogenic 
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influenza strains in mice [80], while cell culture prestimulation with type-I interferons prevents 

viral plaque growth by SARS-CoV (the original 2003 SARS virus) [81], SARS-CoV-2 [81], and 

influenza [82]. Nebulized interferon α2b and interferon β are being investigated as an early 

treatment for COVID-19 [83]. Collectively, these studies demonstrate that immune response 

regulation must balance tissue damage from inflammatory responses and efficient viral 

clearance. Computational modeling may reveal how complex responses emerge during infection 

and aid in identifying immune-targeted treatments. Recent computational models have 

considered many aspects of inflammatory responses to viral infection [84]. Recent models [86] 

of interferon response to viral infection commonly invoke a generic virally resistant cell type. A 

cell of this type is either immune to viral infection or stops ongoing viral replication completely. 

This all-or-nothing response does not capture the dynamics of interferon stimulated genes’ 

(ISGs’) effects on viral growth [94].  

Plaque growth assays seed the virus at low multiplicity of infection (MOI) and allow it to replicate 

and form plaques across a monolayer of host cells in cell culture. Plaques are visible areas of 

infected and dead cells that occur in cell cultures infected with a virus. A previous spatial model 

of influenza viral spread and plaque growth [95] replicated the linear growth of viral plaques in 

vitro and explored the impact of diffusion coefficients on viral plaque formation but did not 

incorporate the cells’ interferon signaling response to the infection. Recent studies of DNA virus 

infection (Herpes simplex virus 2; HSV-2) used agent-based models to examine the role of 

adaptive immune cells in restricting plaque growth [87] while another study found that the 

degree of stochastic signaling minimized the amount of interferon needed to restrict cell death 
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[88].  However, HSV-2 is a DNA virus that activates different signaling pathways from RNA viruses, 

such as influenza.  

We created a computational model of the early stages of infection that simulates lung cells 

infected with RNA viruses, the type of virus responsible for both COVID-19 and flu to help explore 

how the disease forms viral plaques. We developed a multicellular spatial interferon signaling 

model (which we will call the MSIS model) of the early inflammatory response to RNA viral 

respiratory infections in vitro using CompuCell3D [37] (CC3D). The model is parameterized using 

data from influenza virus-infected cell cultures. Consistent with experimental observations, 

simulations exhibit either linear radial growth of viral plaques or arrested plaque growth 

depending on the local concentration of type I interferons. The MSIS model allows us to 

determine conditions that lead to either arrested or persistent plaque growth during a simulated 

infection of a monolayer of lung epithelial cells with an RNA virus. Plaque growth assays are 

commonly used to compare virus growth rates across cell lines [89], to quantify the concentration 

of infective agent [90], and to observe the effects of drugs and compounds on virus spread [91]. 

Simulation of in vitro experiments in silico allows for cheaper, faster, higher-throughput 

hypothesis generation than experiments. The MSIS model replicates familiar biological plaque 

growth assays and cell staining experiments, making its simulation methodology and results 

readily accessible to wet-lab biologists. Our model suggests that the treatment of cells with type-

I interferons, which are currently being evaluated for the treatment of COVID-19, may have a 

protective effect. We also found that enhancing certain aspects of the inflammatory response, 

such as the JAK/STAT pathway, may be able to arrest viral plaque growth, suggesting molecules 

involved in this pathway as possible drug target candidates 
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Our model focuses on two interacting processes: viral replication and the host cells’ early 

interferon response. The modeled virus is produced in infected cells, released into the 

extracellular environment, and diffuses in this environment. The modeled inflammatory 

response includes interferon production, export, diffusion and decay, and the induction of virally 

resistant cell states via ISGs. The model represents a monolayer of immobile human bronchial 

epithelial cells (HBECs). Each cell contains a separate model of epithelial cell interferon signaling, 

viral replication and release, and cell death, which is an ODE model [92] calibrated to data from 

influenza-infected HBECs, that has been modified to include species release or export to the 

extracellular environment. We adapted a standard model of cell type transition during viral 

infection [93], with cells transitioning from uninfected, to eclipse phase, virus releasing, and dead 

cell types. The extracellular environment allows for diffusion of both virus, which leads to the 

formation of viral plaques, and type-I interferons, which are responsible for paracrine interferon 

signaling. The MSIS model gives insight into the mechanisms of IFN regulation and the arrest of 

viral plaques. 

Materials and Methods 

The MSIS model simulates the replication and spread of an RNA virus infection in a monolayer of 

epithelial cells and the interferon response induced by the infection. 

Spatial Considerations of the MSIS model 

During virus infection, lung epithelial cells produce and export virus and anti-viral type-1 

interferon (IFN) proteins. In cell culture, these extracellular species diffuse freely in the medium 

above the apical surface of cells. The apical surface of the epithelium interacts with the bottom 

surface of the medium in which extracellular IFN (IFNe) and virus (Ve) diffuse and decay. Cells 
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export IFN and release virus from their apical surface into the adjacent domain in the chemical 

field. We simulate the model on a lattice that represents the interface between the extracellular 

space and the cell’s apical surface, each voxel length representing 3.0 microns. Unless otherwise 

specified, the simulation domain is a 300 by 300 lattice, representing a tissue patch of 900 by 900 

μm. The layer of epithelial cells is a 100 by 100 array of square cells, each occupying 3 by 3 voxel 

sites. Cells are infected by Ve and respond to IFNe in the same adjacent domain.  

Due to the spatial aspect of the model, the concentrations of extracellular species (IFNe and Ve) 

can be reported at specific lattice sites, averaged over the area of a cell, or averaged over the 

entire lattice. Ve and IFNe indicate the concentration at a specific lattice site while [Ve]per cell and 

[IFNe]per cell indicate the average concentration over a specific cell for extracellular virus and 

extracellular IFN, respectively. The model assumes no spatial variability over the domain of the 

cell. 

Cell Types and Rationale 

Lung epithelial cells are interferon-competent and produce interferon in response to infection by 

a virus. During an infection, both infected and healthy cells are capable of responding to changes 

in extracellular IFN [94] via the JAK/STAT pathway. After infection, cells enter an eclipse phase 

for about 6 hours, during which they produce, but do not release, virus [95]. After the eclipse 

phase, cells begin to release virus and continue to do so until the cell’s resources are depleted, 

resulting in cell death.  

The MSIS model cells (agents) with 4 distinct types: uninfected (U), eclipse phase (I1), virus 

releasing (I2), and dead cells (D). Figure 3.1 provides a conceptual overview of the MSIS model. 

Uninfected cells, U, contain no virus but can produce and export IFN in response to extracellular 



 81 

IFN via the STAT pathway. Paracrine signaling occurs when interferon external to the cell induces 

the phosphorylation of STAT (STATP in Fig 1). U cells transition to the eclipse phase (I1) 

immediately after a successful infection event. Eclipse-phase (I1) cells can produce and export 

IFN, and replicate, but not release virus [96]. Extracellular IFN (via paracrine signaling activation 

of the JAK/STAT pathway) and viral sensor protein (RIGI and TLR7) activation both stimulate cells 

to produce and export IFN. When an I1 cell transitions to the virus-releasing type (I2), all 

properties of the cell remain the same except that cells can now release the intracellular virus 

into the extracellular virus field. When an I2 cell transitions to dead (D), it ceases to produce and 

export IFN or release virus but continues to occupy space in the simulation. 

Cell Type Transition Probabilities 

Transitions between cell types are stochastic, and the probability of a transition occurring during 

depends on the cell’s local extracellular and intracellular concentration of virus (Ve and V 

respectively), the cell’s health (H; described under Intracellular Model Equations and Rationale), 

and the transition rate coefficient (β, k or γH,V). [Ve]per cell is measured as the local extracellular 

virus concentration each cell is exposed to over its entire cell area. We derived the rates in Eq. 

3.1 – 3.3 from the rate laws in [93], following the transformation rules given in [85]. When a cell 

is infected (transitions from U to I1), the internal viral concentration changes from 0 to 6.9E-8 

(unitless), equivalent to a single virus particle entering the cell [92]. This amount of virus was 

considered negligible compared to Ve and is thus not removed from the extracellular virus. Within 

CC3D, cell-type transitions are implemented by sampling a random number for each cell between 

0 and 1, inclusive, at each time step. The cell’s transition occurs when the probability, P, is greater 

than the random number. Each transition must occur in order. 
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Cell-Type Transition Probabilities 

𝑃(𝑈 → 𝐼1) = 1 − exp	(−𝛽	[𝑉>]1>/	?>99 	Δ𝑡),       (3.1) 

𝑃(𝐼1 → 𝐼2) = 1 − exp	(−𝜏H=Δ𝑡)        (3.2) 

𝑃(𝐼2 → 𝐷) = 1 − exp	(−𝛾I,J 	[𝑉]	{1 − 𝐻}	Δ𝑡)      (3.3) 

Figure 3.1. Conceptual diagram of the MSIS model. The MSIS model consists of an intracellular sub-

model, which describes interferon signaling during infection, and a cellular sub-model, which defines 

changes in cell types and extracellular molecular diffusion. Uninfected cells (U, blue) produce IFN via 

paracrine signaling alone since no virus is present in these cells. Eclipse-phase cells (I1, yellow) produce 
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IFN via viral sensor proteins (RIG-I and TLR7) and paracrine signaling (through the JAK/STAT pathway). I1 

cells also export IFN into the extracellular environment. I1 cells allow virus replication but do not release 

virus into the extracellular environment. Virus-releasing cells (I2, red) produce IFN identical to I1 cells and 

export IFN and release virus into the extracellular environment. Dead (D, purple) cells do not interact with 

their surroundings and have no intracellular sub-model. Each cell contains an instance of the intracellular 

sub-model representing interferon signaling (variables RIG-I, TLR, IFN, IRF7, IRF7P, and STATP), viral 

infection, replication, and release (V), and cell health (H). Type-I interferons (IFNe) exported by U, I1, and 

I2 cells, and virus (Ve) released by I2 cells diffuse and decay in the extracellular environment. Paracrine 

interferon signaling occurs through the JAK/STAT pathway, indicated by the arrow from IFNe to STATP 

across the intracellular/cellular border. 

Intracellular Model Equations and Rationale 

During RNA virus infection of lung epithelial cells, the first immune system action is type I 

interferon production (IFNα and IFNβ), which suppresses virus replication and activates many 

downstream components of the innate and adaptive immune systems [97]. Interferons establish 

an antiviral state through the activity of interferon stimulated genes (ISGs), which include 

antiviral Mx proteins, RNA-activated protein kinases, and the 2 – 5A system [98]. The presence 

of an RNA virus is primarily sensed in the cytoplasm by retinoic acid-inducible gene 1 (RIG-I) and 

in endosomes by Toll-like receptors 7 and 9 (TLR7/9) [99]. Both RIG-I and TLR7/9 bind viral RNA 

that has been exposed by the uncoating of the virus. The activation of either sensor leads to the 

phosphorylation of interferon regulatory factor 7 (IRF7) and the production of interferons (see 

[94] for a detailed map of the relevant molecular interactions).. IFN excreted from the cell can 

bind interferon receptors (IFNR), which in turn activate the JAK/STAT pathway, leading to the 

production of more interferon. This positive feedback allows infected cells to produce a more 
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robust interferon response (autocrine effect) while also priming an antiviral state in neighboring 

uninfected cells (paracrine effect). In summary, epithelial cells rely on interferon signaling to 

rapidly establish an antiviral state, and interferons are regulated through several pathways to 

ensure robust virus detection and response. 

 Another process that impacts virus reproduction is cell health. Studies have shown that the 

amount of virus produced by an infected cell decreases dramatically as the cell’s health decreases 

(quantified by its concentration of ATP [100]).  Thus, even minimal models that seek to predict 

virus and interferon production dynamics should represent virus replication, interferon signaling 

dynamics, and the cell’s health. 

The MSIS model adapts and extends to single cells the Weaver model of the dynamics of virus 

replication, interferon signaling, and cell health. The adapted Weaver model includes six ODEs 

(Eq. 3.4 – 3.9) that define the rate equations for intracellular virus replication, interferon 

signaling, and cell health. Specifically, the equations define changes in the intracellular 

concentrations of virus (V [unitless]), interferon (IFN [μM]), phosphorylated STAT (STATP [μM]), 

IRF7 protein (IRF7 [μM]), and phosphorylated IRF7 (IRF7P [μM]). Eq. 3.9 defines the dynamics of 

the health of the cell (H [unitless]). [IFNe]per cell is the average extracellular interferon 

concentration each cell is exposed to over its entire cell area. 

Rate equations for intracellular species and health adapted from Weaver 

F[J]
F2

= M-,-[I][J]

=<
[0123]"35	+3&&

7-,0123

− 𝑄J[𝑉]          (3.4) 

F[HN!]
F2

= [𝐻](𝑘HN!,J(;HOH)𝑉 +
M012,-(9:;)J=

P012,-(9:;)<J=
+ 𝑘HN!,H;NQR[𝐼𝑅𝐹7𝑃]) − 𝑄HN![𝐼𝐹𝑁]  (3.5) 

F[S-T-R]
F2

= M>9?9@,0123[I][HN!>]"35	+3&&
P>9?9@,0123<[HN!>]"35	+3&&

− 𝜏S-T-R[𝑆𝑇𝐴𝑇𝑃]     (3.6) 
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F[H;NQ]
F2

= [𝐻](𝑘H;NQ,S-T-R[𝑆𝑇𝐴𝑇𝑃] + 𝑘H;NQ,H;NQR[𝐼𝑅𝐹7𝑃]) − 𝜏H;NQ[𝐼𝑅𝐹7]    (3.7) 

F[H;NQR]
F2

= 𝑘H;NQR,H;NQ[𝐻][𝐼𝑅𝐹7] − 𝜏H;NQR[𝐼𝑅𝐹7𝑃]       (3.8) 

F[I]
F2

= −𝛾I,J[𝐻][𝑉]           (3.9) 

Below, we provide a brief description of the Weaver model and then discuss how we modified 

the model to support its implementation in the MSIS model (Fig 3.1). 

The Weaver model groups interferon α and β into a single representative species, interferon 

(IFN). We modeled the inhibition of virus production in response to the cell’s spatially averaged 

level of extracellular interferon ([IFNe]per cell) using non-competitive inhibition-like kinetics (Eq. 

3.4). We used mass-action kinetics to describe the induction of IFN (Eq. 3.5) by virus (via the RIG-

I pathway) and IRF7P, and Hill kinetics to define the effect of the concentration of virus on IFN 

production via the TLR pathway. The rate of export of intracellular IFN into the extracellular 

environment obeys the concentration of IFN times a rate constant, QIFN. We model extracellular 

IFN’s ([IFNe]per cell) activation of STAP with Michaelis–Menten kinetics (Eq. 3.6), and mass-action 

kinetics are used to model the effect of STATP and IRF7P on the rate of production of IRF7 (Eq. 

3.7). We also use mass-action kinetics to describe the rate of IRF7P production as a function of 

IRF7 (Eq. 3.8). In all equations, production terms are multiplied by the cell’s health (H) to 

represent the loss of production capacity in an infected cell. Heath is a relative metric bounded 

between 0 and 1, and the rate of the decay of health (Eq. 3.9) is proportional to the concentration 

of virus in the cell and the health of the cell. 

We made three changes to the Weaver model to employ it in the MSIS model. We reinterpreted 

the first-order virus degradation term in the original Weaver model to represent the release of 
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virus into the extracellular environment in the MSIS model. This term appears in Eq. 3.4, where 

the rate of release of virus to the extracellular environment is proportional to the concentration 

of virus times a rate constant, Qv. The Weaver model was a population level model, while Eq. 3.4 

– 3.9 represent single cell intracellular regulation. The Weaver model has a state, P, which 

represents the fraction of live cells in the population. The mathematical equation for health is 

unchanged from the original Weaver model, but we reinterpreted P to represent the health (H) 

of each individual cell. All production terms in Eq. 3.4 – 3.8 are multiplied by the cell’s health 

(bound between 0 and 1) to represent the diminished production capacity of unhealthy, virus-

infected cells. And, lastly, due to the spatial aspect of the MSIS model, we redefined the 

concentration of extracellular IFN in Eq. 3.4 and 3.6 to be the average IFNe over the area of a 

given cell; namely [IFNe]per cell. 

In the multicellular spatial MSIS model, each live cell (U, I1, I2 types) has a replica of the rate 

equations describing intracellular singaling and r viral eplication (Eq. 3.4 – 3.9). Table 3.1 gives 

the initial conditions for each cell type. Table 3.2 lists the parameters for the rate equations. For 

U and I2 cell types, the equations and their parameter values are unaltered. In I1 cells, the 

equations are the same and all parameter values are unchanged except for the parameter value 

that defines the rate of virus release into the extracellular environment, Qv, which is set to zero 

because eclipse phase cells (I1) do not release virus. All parameter values are listed in Table 3.2.  

 Cell Type Units 
U I1 I2 

 
Intracellular 
Species 
Initial Value 

IFN 0 0 0 μM 
STATP 0 0 0 
IRF7 0 0 0 
IRF7P 0 0 0 
H 1 1 1 unitless 
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V 0 6.90E-8 6.90E-8 

Table 3.1. Initial conditions for each cell type when present at the start of a simulated infection. 

Diffusion of Extracellular Species and Implementation in CC3D 

Virus releasing cells (I2) release intracellular virus into the extracellular environment. Uninfected, 

eclipse phase and virus releasing cells (U, I1, and I2) produce and export type-1 interferons in 

response to either virus sensing proteins or autocrine/paracrine signaling. In cell culture, these 

extracellular species diffuse freely in the medium above the apical surface of cells. The MSIS 

model contains a cell lattice next to two chemical field lattices (and the diffusion of extracellular 

species across either chemical field lattice is unaffected by the presence of cells in the adjacent 

cell lattice. Eq. 3.10 models diffusion of extracellular interferons, where DIFNe is the diffusion 

coefficient of interferon, QIFN is the rate constant for export of interferon by cells into the 

extracellular environment, and IFN is the internal amount of interferon inside each cell. Cell types 

U, I1, and I2 can produce and export interferon.  

Eq. 3.11 models diffusion of the extracellular virus, where DVe is the diffusion coefficient of virus 

and Qv is the secretion rate constant for release of virus by late infected (I2) cells. Intracellular 

virus (V) is a normalized, unitless quantity representing the per cell viral load, while extracellular 

virus (Ve) has units of PFU mL-1 and represents the concentration of infectious virus in the 

extracellular environment. The unit conversion is achieved via Qv’s units of PFU mL-1 hr-1. 

Extracellular Species 

U[HN!3]
U2

= 𝐷HN!>∇([𝐼𝐹𝑁>] + 𝑄HN![𝐼𝐹𝑁] − 𝜏HN!>[𝐼𝐹𝑁>]    (3.10) 

U[J3]
U2

= 𝐷J∇([𝑉>] + 𝑄J[𝑉] − 𝜏J>[𝑉>]              (3.11) 
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CompuCell3D calculates the integrated amount of Ve and IFNe directly above each cell to calculate 

[Ve]per cell and [IFNe]per cell and passes these values to Eq. 3.1, 3.4, and 3.6. It then integrates the 

diffusion and the intracellular species’ rate equations and calculates the amount of virus released 

and the amount of IFN exported from each cell. It then evaluates the probabilities for cell type 

transitions for each cell following Eq. 1 – 3 to determine whether each cell experiences such a 

transition. 

Initial and Boundary Conditions 

All simulations use periodic boundary conditions along the x and y axes. When simulating low 

MOI conditions, at time zero all cells are U type, except for one I1 cell at the center of the 

simulation. To simulate high MOI conditions, all cells are initially I2 type. Table 3.1 gives the initial 

conditions for the intracellular variables of each cell type at time zero. In all simulations, the 

extracellular environment initially contains no Ve or IFNe.  

To simulate interferon pretreatment, the simulation starts at 12 hrs pre-infection, with all cells U 

type (initial conditions listed in Table 3.1) and exposed to IFNe at 0.04 μM. At time = 0 hrs (12 

hours after IFNe exposure), we simulate washing of the cells by setting IFNe = 0 μM and initiate 

the infection by setting a cell at the center of the simulation’s lattice to the I1 type. Due to the 

IFN pretreatment, all cells have the same intracellular state at time zero except for the single I1 

cell, for which V is set to 6.9E-8 (unitless) [92]. 

Parameter Determination 

Many MSIS model parameters come directly from the Weaver model [92]. The Weaver model 

was parameterized using the lowest sum-of-squares error resulting from a parallel tempering 

Markov chain Monte Carlo fit to data collected from HBECs infected with wild-type A/Puerto 
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Rico/8/1934 Influenza A [101]. Each cell’s ODE model in the MSIS model is the Weaver model, 

modified as described previously. Table 3.2 gives a comprehensive list of model parameters and 

their origin. Virus diffusion coefficients can vary by several orders of magnitude depending on 

media type, based primarily on the medium’s viscosity [85]. We set the diffusion coefficient for 

both Ve and IFNe to 54.0 μm2 s-1, within the range of experimental measurements [102] for both 

species. For these diffusion coefficients, the baseline parameter set led to continuous plaque 

growth. We rescaled the cell type transition parameter β [93] from units of median tissue culture 

infectious dose (TCID50
-1 hr-1) to plaque-forming units (mL PFU-1 hr-1) for consistency with the 

Weaver model’s units for viral load. 

Parameter Value Units Process 

kIFN,V(RIGI) 0.0 μM hr-1 Rate of IFN production via RIG-I virus sensing 

kIFN,V(TLR) 9.746 h-1 Maximal rate of IFN production via TLR virus sensing 

KIFN,V(TLR) 12.511 [unitless] Apparent dissociation constant of TLR virus sensing 

kIFN,IRF7P 13.562 h-1 Rate of IFN production via IRF7P 

QIFN 10.385 h-1 Coefficient of export of IFN to the extracellular 
environment 

kSTATP,IFNe 675.323 μM h-1 Maximal rate of STAT phosphorylation via IFNe 

KSTATP,IFNe 80.353 μM Michaelis-Menten constant for STAT phosphorylation 
via IFNe 

τSTATP 0.3 h-1 Dephosphorylation rate of STATP 

kIRF7,STATP 0.115 h-1 Rate of IRF7 induction via STATP 

kIRF7,IRF7P 1.053 h-1 Rate of IRF7 induction via IRF7P 

τIRF7 0.75 h-1 Decay rate of IRF7 

kIRF7P,IRF7 0.202 h-1 Rate of IRF7 phosphorylation via IRF7 
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τIRF7P 0.3 h-1 Dephosphorylation rate of IRF7P 

γH,V 0.635 h-1 Rate of cell health loss due to viral load and rate of 
transition from virus releasing (I2) to dead (D) cells 

kV,V 1.537 h-1 Rate of viral replication 

KV,IFNe 0.020884 μM Michaelis-Menten constant for IFNe inhibition of viral 
replication 

QV 0.197 PFU mL-1 h-1 Coefficient of the rate of viral release into the 
extracellular environment 

n 3 [unitless] Hill coefficient of TLR virus sensing 

β 1E3 mL PFU-1 hr-

1 
Rate of transition from uninfected (U) to eclipse 
phase (I1) cells 

τI1 0.167 h-1 Rate of transition from eclipse phase (I1) to virus 
releasing (I2) cells. 

τVe 0.542 h-1 Decay rate of virus in the extracellular environment 

τIFNe 3.481 h-1 Decay rate of IFNe in the extracellular environment 

DVe 54.0 μm2 s-1 Diffusion coefficient of Ve 

DIFNe 54.0 μm2 s-1 Diffusion coefficient of IFNe 

LVe 0.09 μm Calculated diffusion length of extracellular virus 

LIFNe 0.23 μm Calculated diffusion length of IFNe 

Voxel 
Width 

3 μm Width of lattice voxels 

Cell Size 9 μm Width of cells 

Table 3.2. Baseline parameter values and sources 

Plaque Growth Metrics 

Viral plaques are visible areas of dead or damaged cells that occur where a virus has spread across 

a continuous patch of cells in cell culture. At early times, a growing plaque consists of a central 

domain of I2 cells surrounded by a ring of I1 cells. At later times, the plaque consists of a domain 
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of dead cells surrounded by a ring of I2 cells, in turn, surrounded by a ring of I1 cells. We measure 

the radial growth speed of the outer border of the domain of eclipse (I1), virus releasing (I2), and 

dead (D) cell types. In the simulations, we determine these speeds by seeding a single I1 cell in 

the center of a simulated sheet of cells and measuring the total area of each cell type over time. 

We assume the plaques are circular to estimate their radius. We averaged plaque growth metrics 

over 20 simulations for each parameter set. In experiments, plaque-plaque interference occurs 

when two or more plaques grow into the same spatial region, slowing the radial growth of the 

colliding plaques. This paper simulates only the growth of isolated plaques. 

Results 

Multicellular Spatial Model of RNA Virus Infection and IFN Signaling (MSIS model) Reproduces 

ODE Model Dynamics for High MOI infection 

We first checked whether the MSIS model reproduced the dynamics of the Weaver model for the 

same simulated experimental conditions [92]. The Weaver model was fitted to data from HBECs 

[101] that were uniformly infected with an influenza virus at MOI = 5. For such high MOI initial 

conditions, the spatial inhomogeneity of the multiscale model should have a negligible effect on 

the population-level dynamics, because all cells are infected simultaneously. To replicate the 

Weaver model simulations for an MOI = 5 infection, we initialized the MSIS model with only virus 

releasing (I2) cells and no eclipse phase (I1) cells. A non-uniform cell type distribution (Fig 3.2A) 

and local IFNe concentration field (Fig 3.2B) emerge in the MSIS model simulations due to the 

stochastic cell transitions, which lead to spatially varying IFNe and Ve, and to non-uniform rates 

of death of I2 cells. 
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Figure 3.2C compares the average fraction of live cells and average levels of chemical species in 

the MSIS and Weaver models. The fraction of live cells has the same shape in the two models, 

but dead cells start accumulating slightly later in the MSIS model than in the Weaver model. A 

major distinction between the MSIS model and the Weaver model is that the number of MSIS 

cells is discrete. For homogeneous, high MOI starting conditions, all concentrations grow rapidly 

after the onset of viral release, reach a maximum, and then decay nearly exponentially on a 

slower time scale. For each variable, the MSIS model value is always greater than or equal to the 

Weaver model value. Relative errors are largest at times when the values are near their maxima 

and are always less than 15%. Cell death begins slightly later in the MSIS model than in the 

Weaver model and the cell death rate increases slightly faster, so that all cells die at nearly the 

same time. Since the MSIS model produces dynamic responses like those of the Weaver model 

under high MOI, we will assume that differences between the dynamics of the two models at low 

MOI result from stochastic spatial effects, not from differences in parameters or errors in 

spatializing the Weaver model.  
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Figure 3.2. Comparison of time series for key variables between the multicellular spatial interferon 

signaling (MSIS) model and Weaver model for high MOI. All cells are initially infected with 6.9E-8 

(unitless) virus, matching the original data to which the Weaver model was fit [101]. (A) Snapshots of the 

cell field showing cell type (virus releasing [I2] in red and dead [D] in purple) at different times in a 
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representative MSIS simulation. (B) Snapshots of the concentrations of extracellular interferon (high 

concentrations in red, low concentrations in blue) at different times in a representative MSIS simulation. 

(C) Time series for key variables for the Weaver and MSIS models. MSIS simulations are averaged over 20 

replicas at matching times. Error bars are included but are too small to be visible. For the MSIS model, 

average concentrations for intracellular species and Health are calculated over all live (I2) cells at each 

time point while the Average Extracellular IFN for the MSIS model is the average of IFNe across the entire 

simulation domain.  

MSIS Model Recapitulates Experimentally Observed Plaque Formation and Growth Dynamics 

High MOI experiments are useful for determining the time course of viral titer and how long cells 

survive a viral infection, but, unlike plaque assays, they do not provide information about viral 

spread and the spatial aspects of cytokine responses. We explored low MOI plaque assay 

experiments in silico. Fig 3 (left) shows multiple plaques that formed in a culture of cells infected 

with an H5N1 influenza virus. We first evaluated if the MSIS model produced plaque-like 

structures beginning with a single point of infection, similar to those in experiments for low MOI. 

We created a simulation with two I1 cells seeded in similar locations to a subset of the plaques 

shown in Fig 3’s left image. Figure 3,3 shows simulation results at 80 hours. The MSIS model 

reproduces the circular geometry of experimental plaques. The length scales differ between the 

experimental and simulated plaques because the MSIS model is parameterized for an H1N1 virus, 

while the experiment shown used a faster replicating H5N1 virus. 
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Figure 3.3. Comparison of an experimental plaque assay for influenza (H5N1; left) with an MSIS model 

plaque simulation (for H1N1; right). The simulation seeded two plaques in a simulation domain to 

replicate a subset of the experimental area. The simulated plaques have a similar structure to the 

experiment. Outlined area in the experimental image corresponds roughly to the area of the simulation 

domain. 

Next, we explored plaque growth dynamics in the MSIS model. Figure 3.4A and 3.4B show 

experimental plaque radii vs time (data reproduced from [85]). While the increase in viral load 

during infection is typically exponential, plaque radius grows linearly in time. The experiment 

measured the radius of the outer edge of the domain of dead cells (equivalent to D in the model) 

and the outer edge of the domain of infected cells (equivalent to I1 in the model). The MSIS 

model distinguishes the eclipse phase (I1) from virus releasing (I2) cells, which normally cannot 

be distinguished in experimental plaque growth assays. For simulations beginning with a single 

I1 cell, Fig 4C shows that the MSIS model replicates several experimental observations. Both 

experiments (Fig 4A and 4B) and the MSIS model (Fig 4C) show a lag phase with no plaque growth. 

During the lag phase, cells are not releasing virus and no new cells are being infected. The 
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simulation follows Tables 3.1 and 3.2 for initial conditions and model parameters, respectively. 

Figure 3.4E shows snapshots of the cell types at 17 hours, 33 hours, 50 hours, and 67 hours in a 

single replica simulation. Figure 3.4D shows snapshots of the Ve field at corresponding times in 

the same simulation replica. Figure 3.4F shows the IFNe concentration field at corresponding 

times for the same simulation replica. Figure 3.4G shows the cell type composition of the culture 

over time. Dead cells first appear after 20 hours, after which the radius of plaque’s central, 

circular domain of dead cells increases linearly in time. The radial growth rate of the plaque 

remains constant until the plaque reaches the edge of the simulation domain. Around 18 hours 

post-infection, Ve (Figure 3.4H) and IFNe in the culture (Figure 3.4I) decrease briefly because the 

initially infected cell has died and stopped releasing virus and exporting IFN. During this time, the 

second generation of infected cells (those infected by the virus released by the initially infected 

cell) are primarily I1 phase and not yet releasing virus. 
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Figure 3.3. Plaque growth simulations replicate experimentally observed linear radial plaque growth. 

(A, B) Radius vs time of outer boundaries of the domains of infected and dead cells for wild-type and 

H275Y mutant A/Miss/3/2001 (HIN1) infection-induced plaques, respectively. Data reconstructed from 

[85]. Squares indicate the radius of the outer edge of the plaque (the boundary between infected cells 

and uninfected cells) and circles indicate the radius of the boundary between dead cells and infected cells 

in the plaque. Dotted lines show a linear regression for visualization of plaque radius vs time. (C) Simulated 

plaque growth shows the lag phase and linear growth of the experimental plaques. The solid line indicates 

the median for 20 simulation replicas and the shaded areas indicate the 5th and 95th percentiles of 

observed values. Figs 3.4D, 3.4E, and 3.4F show sequential snapshots (at 17, 33, 50 and 67 hours) of the 

Ve field (D), cell type (E), and IFNe field for a single simulation replica of a growing plaque. Time progresses 

from left to right. Figs 3.4G, 3.4H, and 3.4I show the median (solid line) and 5th to 95th percentile (shaded 

areas) of the simulated cell types, average Ve, and IFNe, respectively, calculated for an ensemble of 20 

simulation replicas.  

The MSIS model recapitulates the experiments’ linear radial growth of viral plaques. The MSIS 

model’s ability to simulate both high and low MOI experiments and reproduce experimental 

observations, without additional parameter fitting to these conditions, gives confidence in its 

predictive capabilities in the novel circumstance of low MOI simulations. 

Increased STAT Activity Leads to Arrested Plaque Growth and Reduces Final Plaque Diameter 

The JAK/STAT pathway triggers an inflammatory reaction via auto/paracrine signaling and 

inhibition of this pathway has been implicated in improved H1N1 influenza survival in mice [103]. 

We wished to assess the impact of STATP activity on plaque growth dynamics in the MSIS model. 

We simulated plaque growth while altering the ability of extracellular interferons to activate the 

JAK/STAT pathway in the MSIS model by increasing the value of kSTATP,IFNe (Eq. 3.6 and Table 3.2) 
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from its baseline value (45.9 μM hr-1, Table 3.2) up to 125.89x this value. For three values of 

kSTATP,IFNe, we show the plaque size and shape at 80 hours post-infection (Fig 3.5A) and the cell 

type dynamics over time (Fig 3.5B). The baseline value leads to unconstrained plaque growth. 

Values of kSTATP,IFNe ≥ 459.22 μM hr-1 (10x baseline value) led to the arrest of plaque growth. 

Increasing kSTATP,IFNe ≥ 4592.2 μM hr-1 (100x baseline value) reduces the time to plaque growth 

arrest, resulting in smaller plaques. These simulations use Table 3.1 initial conditions and Table 

3.2 parameters except for the modified values of kSTATP,IFNe. Increasing the degree to which IFNe 

promotes STATP production arrests plaque growth and reduces the final plaque size. 

Figure 3.5C shows the rate of change of plaque radius at the end of the simulation as a function 

of kSTATP,IFNe,  which controls the degree to which a given level of IFNe leads to active STATP, Eq. 

3.6. For kSTATP,IFNe multipliers of 15.85 and above, the plaque growth rate is always zero at the end 

of the simulation, indicating plaque arrest. Arrest occurs earlier for higher kSTATP,IFNe (Fig 3.5B, 2nd 

and 3rd panels). kSTATP,IFNe multipliers above 6.31 reduce the area under the curve (AUC) for 

average Ve (Fig 5D), while multipliers between 1.0 and 6.31 have little to no effect on viral AUC. 

The AUC of average IFNe (Fig 3.5E) increases with increasing kSTATP,IFNe, with a dramatic increase 

in the range of multipliers of 6.31 to 10.0. Note logarithmic ordinate scale for both average Ve 

and IFNe AUC. Larger kSTATP,IFNe would correspond to a stronger interferon response and reduced 

viral titer. kSTATP,IFNe ≥ 4592.2 μM hr-1 leads to non-physiological unbounded production of IFN, 

due to the lack of an IFN-mediated cell death mechanism in both the Weaver and MSIS models.  
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Figure 3.4. Elevated STATP activity (larger kSTATP,IFNe) leads to arrested plaque growth. (A) Images of the 

simulated plaques at 80 hours post-infection for a single simulation replica when kSTATP,IFNe was 1x, 10x, or 

100x larger than its baseline value. Arrested plaque growth occurs when kSTATP,IFNe is 10x or 100x larger 

than baseline. (B) The median (solid line) and 5th and 95th percentiles (shaded regions) for 20 simulation 

replicas of the cell types over time for kSTATP,IFNe at 1x, 10x, or 100x larger than its baseline value of 45.9 

μM hr-1. (C) The plaque radius’ linear growth rate at 80 hours, (D) the area under the curve (AUC) of the 

average Ve, and (C) the AUC of the average IFNe when kSTATP,IFNe is changed between its nominal value to 

125.98x nominal, over 20 simulation replicas. 
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Elevated RIG-I Activity Delays Cell Death and Increases IFN Production 

In influenza infection, greater viral inhibition of RIG-I signaling via NS1 protein often increases 

viral infection severity [104]. We wished to investigate the effects of decreasing this antagonistic 

strength on plaque growth dynamics in silico. In our simulations kIFN,V(RIGI) controls the strength of 

the RIG-I response, with larger values corresponding to a stronger response (more IFN produced 

per unit of virus, Eq. 3.5). Our simulations so far assumed that the invading virus completely 

inhibited the RIG-I pathway (kIFN,V(RIGI) = 0, Eq. 5). Previous work used data from cells infected with 

an NS1-knockout influenza virus (A/Puerto Rico/8/1934 [dNS1PR8]) to estimate the rate of IFN 

production via RIG-I virus sensing (kIFN,V(RIGI) = 10E5 μM hr-1 [92]). We ran single-plaque growth 

simulations for 14 values of kIFN,V(RIGI) between 0% and 100% of this estimate. These simulations 

use Table 3.1 initial conditions and Table 3.2 parameters except for the value of kIFN,V(RIGI). At 80 

hours post-infection (Fig 3.6A) the plaque radius is nearly the same for all cases, shown for 0%, 

50%, and 100% activity. However, the cell type composition of the plaque (Fig 3.6B) differs 

significantly, with significantly less cell death and thus a higher fraction of I2 cells, for kIFN,V(RIGI) 

multipliers greater than 50%. Higher levels of RIG-I signaling (larger values of kIFN,V(RIGI)) only 

slightly reduce the radial plaque growth at the end of the simulations (Fig 3.6C). The AUC of the 

average Ve decreases steadily with increasing RIG-I activity (Fig 3.6D), decreasing more rapidly 

for kIFN,V(RIGI) multipliers greater than 25%. The AUC of average IFNe increases dramatically for 

parameter multipliers less than 0.03x nominal and more gradually thereafter (Fig 3.6E). 
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Figure 3.5. Increased RIG-I activity (kIFN,V(RIGI)) lowers plaque growth rates and viral titers, slows cell 

death, and increases interferon production. (A) Images of plaques at 80 hours post-infection for a 

representative simulation replica for three values of kIFN,V(RIGI) (0, 5E5 μM hr-1and 10E5 μM hr-1) and (B) the 

median (solid line) and 5th and 95th percentiles (shaded regions) of the plaque radius over time for 20 

simulation replicas for kIFN,V(RIGI) equal to 0x, 0.5x, or 1x its nominal value of 10E5 μM hr-1. (C) The plaque 

growth rate at 80 hours, (D) the area under the curve (AUC) of the average Ve, and (E) the AUC of the 

average IFNe for different values of kIFN,V(RIGI), over 20 simulation replicas.  

Increasing levels of RIG-I activity for a given level of virus (larger kIFN,V(RIGI)) increases the 

intracellular production of IFN (eq. 3.5). This higher intracellular IFN leads to higher IFNe due to 
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cell export (Eq. 11). Higher IFNe leads to a reduction of intracellular viral levels (Eq. 3.4). Since the 

rate of decrease of cell health (H) is linear with respect to intracellular virus level (Eq. 3.9), and 

the death rate of cells is proportional to both the virus level and H (Eq. 3), higher values of 

kIFN,V(RIGI) increase the survival time of infected cells both by decreasing the intracellular virus level 

and by slowing the decrease of H. Overall, the model predictions are consistent with the 

expectations that greater RIG-I activity leads to reduced virus production (i.e. reduced virus 

titers). 

Interferon Prestimulation Arrests Plaque Growth 

Prestimulation of cell cultures with type-I interferons reduces the amount of virus produced in 

cells infected with SARS-CoV, SARS-CoV-2 [81], or influenza [82]. We simulated prestimulation 

experimental conditions in the MSIS model to explore these protective effects by exposing 

uninfected (U) cells to IFNe at 0.04 μM at 12 hours pre-infection (-12 hours, since infection is 

referenced as time = 0), using the values of the parameters in Table 3.2. All cells were exposed 

to the same concentration of IFNe. Since cell type transitions do not occur in the absence of virus, 

after 12 hours, all cells had identical intracellular chemical concentrations shown in Table 3.3. At 

0 hours, IFNe is set to zero to simulate washing IFNe out of the cell culture, and a single cell is 

infected in silico by setting it to the I1 type. We then assessed the impact of IFN prestimulation 

on plaque growth. 

Species Initial Conditions 
IFN 0.035 μM 
IRF7 0.097 μM 
IRF7P 0.028 μM 
STATP 0.714 μM 

Table 3.3. Intracellular chemical concentrations in cells 12 hours after in silico exposure to IFNe. These 

values provide the initial conditions for IFN prestimulation simulations. 
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Simulated prestimulation entirely arrests plaque growth after 35 hours (Fig 3.7A), while the same 

initial infection in a field of naïve, unstimulated cells resulted in the infection and eventual death 

of all simulated cells (Fig 4C and 4G). Only the initially infected cell dies. The proportion of eclipse 

phase (I1) cells steadily decreases after 20 hours, indicating a cessation of new infections (Fig 

3.7B). The average Ve concentration (Fig 3.7C) also decreases after 20 hours. The average IFNe 

concentration (Fig 3.7D) is higher than in the baseline simulation. 

 

Figure 3.6. Prestimulating cells with type-I interferon led to plaque growth arrest in simulations. We 

simulate an experiment with 0.04 μM IFNe prestimulation for 12 hours, which is removed immediately 

before infection. (A) Sequential snapshots (at 10, 15, 25 and 35 hours post-infection) of plaques for a 

representative simulation replica. (B) Cell type fractions vs time. (C) Average Ve vs time and (D) the average 

IFNe vs time. The solid lines indicate medians and shaded areas represent the 5th and 95th percentiles 

over 20 replicas. 
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Faster Interferon Diffusion Promotes Plaque Growth Arrest 

Diffusion coefficients for the virus and interferon will depend on virion diameter and the viscosity 

and chemistry of the medium in vitro [85]. We varied virus and interferon diffusion coefficients 

simultaneously. Because the actual diffusion coefficient of the extracellular IFN is likely to be 11x 

to 17x greater than that of the virus, we varied the interferon diffusion coefficient from 54 μm2 

s-1 to 2160 μm2 s-1 (1x to 40x the baseline interferon diffusion coefficient) and the virus diffusion 

coefficient from 54 μm2 s-1 to 216 μm2 s-1 (1x to 4x the baseline virus diffusion coefficient). 

Simulations used initial conditions from Table 3.1 and parameters from Table 3.2 except for the 

revised diffusion coefficients. We calculated the median growth rate of the plaque radius at the 

end of the simulation over 20 replicas. If the median linear growth rate was 0 at the end of the 

simulation, we classified the parameters as leading to plaque arrest (orange); otherwise, we 

classified the parameters as leading to continued growth (blue). In our simulations, an interferon 

diffusion coefficient of 8x to 10x the viral diffusion coefficient led to plaque growth arrest (Fig 

3.8). The boundary between the domains suggests that for high viral diffusion coefficients, virus 

diffusion ceases to be the rate-limiting factor in plaque growth. In summary, there is a broad 

range of values for both diffusion coefficients in which plaque arrest and continuous growth may 

occur. Better estimates of these diffusion coefficients can help clarify the relative importance of 

intracellular versus extracellular processes in viral infection. 



 106 

 

Figure 3.7. Dependence of plaque growth rate and arrest on viral and IFN diffusion coefficients. Each 

box shows 20 replica simulations’ cell type progression over time for the indicated diffusion coefficient 

multiplier combination. The solid-colored lines indicate the medians of the radii, and the shaded regions 

indicate the 5th and 95th percentile radii over 20 replicas. In the orange shaded region (above the bold line) 

plaques arrest by 80 hours. In the blue shaded region (below the bold line), plaques continue to grow until 

the end of the simulation.   

Sensitivity Analysis Reveals that the Main Parameters Controlling Radial Plaque Growth Differ 

Between Regimes 

To determine how individual parameters affect the growth of plaques, we performed local 

sensitivity analyses around parameter sets in three regimes in parameter space; the baseline 

parameter set (Table 3.2), the High JAK/STAT regime (kSTATP,IFNe = 688.5 μM hr-1, 15x baseline 
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value, all other parameter values as in Table 3.2), and the High IFN Diffusion regime (DIFNe = 540.0 

μm2 s-1, 10x baseline value, all other parameter values as in Table 3.2). For each regime, we ran 

20 simulation replicas using the regime’s nominal parameter values. Then, we perturbed each 

parameter individually ±25%, ran 20 simulation replicas for each perturbed parameter set, and 

performed statistical analyses on several sensitivity metrics derived from the simulated 

trajectories. Sensitivity metrics include the percent change from the average of the baseline 

simulations of the plaque radius growth rate, the maximum value of Ve and IFNe that occurred 

over time, and the AUC of average Ve and IFNe. We determined the statistical significance of the 

change in each metric from its unperturbed value using a Student’s t-test. The top row of Figure 

3.9 shows the cell type progression for plaque growth assays for each regime.  



 108 

 

Figure 3.8. Local single-factor sensitivity analysis for three simulation regimes. (A) “Baseline” 

corresponds to the baseline parameters in Table 3.2. (B) “High JAK/STAT” corresponds to a 15x increase 

in the phosphorylation rate of STATP via the JAK/STAT pathway (parameter kSTATP,IFNe), with all other 

parameters as in Table 3.2. (C) “High IFN Diffusion” corresponds to a 10x increase in the diffusion 

coefficient of IFNe, with all other parameters as in Table 3.2. Sensitivity analyses varied each parameter 

one-at-a-time ± 25% around its unperturbed value and quantified the average plaque radius growth rate 
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at the end of the simulation, the maximum extracellular virus (Ve) and interferon (IFNe) levels that 

occurred, and the area under the curve (AUC) for both average Ve and IFNe. The sensitivity metrics average 

the absolute values of the metric for increased and decreased parameters over 20 replicas for each 

parameter set. 

Previous sections demonstrated that variation in multiple parameters could lead to either 

continuous or arrested plaque growth. The baseline parameter set leads to the continuous 

growth of the plaque. In this regime, the rate of STATP dephosphorylation (determined by τSTATP, 

Eq. 3.6), the strength of induction of IRF7 by STATP and IRF7P (determined by the kIRF7,STATP, and 

kIRF7,IRF7P rate parameters in Eq. 3.7), the maximal rate of viral replication (represented by the rate 

parameter kV,V in Eq. 3.4), the extracellular virus diffusion coefficient (DVe in Eq. 3.10), and the 

rate of nonspecific extracellular viral clearance (τVe in Eq. 3.10) have the largest effects on the 

metrics. For example, increasing the maximal viral replication rate, the probability of transition 

from U to I1 cell types or the extracellular virus diffusion coefficient (DVe, effect shown in Fig 3.8) 

leads to faster plaque growth, whereas increasing the virus release rate to the extracellular 

environment (QV, results not shown) or the extracellular IFN diffusion coefficient slows plaque 

growth. The High JAK/STAT and High IFN Diffusion regimes both have arrested plaque growth. In 

these regimes, the parameters associated with the activation of paracrine signaling have 

statistically significant sensitivity to perturbations tested. The magnitude of the effects is higher 

in the High JAK/STAT regime than in the High IFN Diffusion regime. This suggests that paracrine 

signaling is a more feasible target for immunomodulation. The increase in parameter sensitivity 

in arrested plaque growth regimes also suggests that experimental conditions leading to arrested 
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growth could improve the parameterization of future models and investigations into the 

interferon signaling response to viral infection. 

Discussion 

We developed a mechanistic, multicellular spatial model of interferon signaling (the MSIS model) 

that we used to evaluate how changes in key parameters impacted plaque growth in RNA virus-

infected cell cultures. The MSIS model produced plaque-like structures (Fig 3.3). The MSIS model 

includes parameters that were fit to data from H1N1-infected cell culture experiments (see Table 

3.2). Without additional parameter training, we showed that the model produced plaque growth 

dynamics (Fig 3.4C) similar to those observed in cells infected with two different H1N1 influenza 

viruses (Fig 3.4A and 3.4B).  We then focused on using the MSIS model to evaluate how altering 

intracellular signaling rates and/or diffusion rates might impact plaque growth and performed 

sensitivity analyses to determine the experimental conditions under which the model’s 

parameter values can best be estimated. 

One of the most significant outcomes of this study is that the sensitivity analysis of the MSIS 

model suggests that experiments should be performed in conditions that lead to plaque growth 

arrest rather than unlimited growth to improve the identifiability of interferon signaling 

parameters (Fig 3.8). Often, cell culture experiments of virus growth dynamics employ cell lines 

or conditions that promote virus plaque growth. For example, Vero cells are frequently used in 

studies because they do not produce interferon and therefore support robust virus replication. 

However, our sensitivity analysis shows that performing experiments in cells with more robust 

IFN responses will provide more informative data to estimate 19 of the interferon signaling 

parameters, compared to only 9 parameters being significantly sensitive in regimes leading to 
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unconstrained plaque growth. And 8 of these 9 parameters significantly affect the model outputs 

under both constrained and unconstrained plaque growth. In all, the model suggests that 

experiments performed in IFN-competent cells under conditions that lead to plaque arrest are 

best for accurately inferring interferon signaling-associated parameter values. 

We also used the MSIS model to evaluate the effects of increased paracrine activity (via STATP), 

increased intracellular virus detection (via RIG-I), and prestimulating cells with IFNe. All three 

changes lead to increased concentrations of extracellular IFN but only elevated paracrine 

signaling resulting from enhancing STATP activation (Fig 3.5) and interferon prestimulation (Fig 

3.7) led to plaque growth arrest. Both IFN prestimulation and enhanced STATP production via 

extracellular IFN resulted in a reduced concentration of extracellular virus and an increased 

concentration of extracellular IFN. The final plaque size at the end of the simulations is similar 

when comparing the IFN prestimulation simulations (Fig 3.7A) to the simulation when STATP 

activation via extracellular IFN is enhanced by 100x (Fig 3.5A; furthest panel on the right). 

Enhanced STATP activation and IFN prestimulation leading to suppressed virus production and 

plaque growth are consistent with known biology and experimental observations.  

However, the model’s predictions on the effects of enhancing intracellular detection of virus via 

the RIG-I pathway differs significantly from experimental observations. Experiments show that 

enhanced RIG-I binding of viral RNA leads to increased IFN production, reduced virus production, 

and smaller plaques [105]. Increasing RIG-I activity in silico increased IFN production and 

decreased virus production but did not significantly change the plaque size at the end of the 

simulation (Fig 3.6A). It did affect the cell type demographics, leading to significantly fewer dead 

cells and many persistent I2 cells (Fig 3.6B). Future work could investigate the effect of 
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intracellular IFN and viral load on the rate of cell death, which is independent of these factors in 

the MSIS model (Eq. 3.3).  

We then considered how diffusion coefficients impact plaque growth (Fig 3.8). A Stokes-Einstein 

estimate of diffusion coefficients for virus particles (with an effective radius of 80 – 120 nm) [106] 

and interferon proteins (with an effective radius of 7 nm) [107] predict 11x – 17x larger diffusion 

coefficients for interferon in most media. While diffusion coefficients can vary over several orders 

of magnitude during the course of a single cell culture experiment (due to cell secretion of 

molecular species like collagen which increase medium viscosity or proteases which can decrease 

it) [85], we used a constant, equal, diffusion coefficient for both species (54.0 μm2 s-1) in our 

baseline simulations, resulting in continuous radial plaque growth. The decay rates (τVe and τIFNe) 

yield effective diffusion lengths for Ve and IFNe of 0.09 μm and 0.23 μm, respectively. In Fig 3.8, 

we explored how changing the diffusion coefficients impacts plaque growth, identifying a clear 

boundary between regimes of arrested and continuous plaque growth. Fig 8 shows that even 

when DIFNe is significantly larger than DVe both arrested and unconstrained plaque growth can 

occur for different values of DIFNe. In summary, we show that the model can produce 

unconstrained and constrained plaque growth over a wide range of diffusion coefficient 

combinations. Future work will focus on refining these values and may consider time-dependent 

diffusion coefficients. 

One major shortcoming of the MSIS model is the lack of additional mechanisms to model cell 

death. During infection, cell death occurs via several mechanisms, including via programmed cell 

death (apoptosis) and pyroptosis, cell death induced via inflammasomes [108]. Lacking these 

mechanisms, cell death only occurs in the MSIS models as the intracellular concentration of virus 
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increases and the cell health declines (Eq. 3.3). But as seen in Fig 3.5A, 3.6A, and 3.7A, cells can 

become stuck in the I2 cell type as the reduced concentration of intracellular virus and the slow 

rate of health decline significantly reduces the likelihood of a cell transitioning to the dead type. 

The equation that defines how cell health declines (Eq. 3.9) was directly translated from a 

population-level model where health translated to the fraction of uninfected cells. In that 

context, Eq.3. 9 is reasonable, but as a model of the health of a single cell, having the rate of 

health decline be linearly dependent on the current health of the cell (i.e., health declines more 

rapidly for healthier cells) might not be reasonable. To improve the model's relatability to 

experimentation, future work will focus on including additional mechanisms of cell death as well 

as improving the kinetic description of how cell health impacts a cell’s transition to death.  

The SARS-CoV-2 and influenza viruses for which this model was constructed have many 

similarities. Like influenza’s NS1 protein, SARS-CoV’s NSp1 antagonizes RIG-I signaling [104], and 

genome analysis shows an 87% conservation of NSp1’s genome between SARS-CoV and SARS-

CoV-2 [81]. This similarity suggests that the MSIS model could readily be adapted to model SARS-

CoV-2-induced interferon signaling from measurements of SARS-CoV-2-specific virus kinetics. 

The MSIS model can also be extended to consider additional spatial aspects of infection. The 

modular architecture supports independent and collaborative development of extensions to 

account for additional immune response mechanisms in vitro such as IFN-mediated cell death. It 

also supports extending the model to include aspects of the immune response in vivo such 

as propagation of IFN signaling by local innate immune cells and recruitment of adaptive immune 

cells to the site of infection.  

  



 114 

Run for your life – an integrated virtual tissue platform for incorporating exercise oncology 

into immunotherapy 

Introduction 

Computational modeling is playing increasingly important roles in advancing system-level 

mechanistic understanding of complex biological processes. In silico simulations guide 

experimental and clinical efforts and can accelerate therapeutic. Here we present a 

computational platform that can interrogate the potential mechanisms underlying the enhancing 

effect of aerobic fitness on anti-tumor immune response. These effects, documented in pre-

clinical [109] and clinical studies [110], furnish us with a natural backdrop for probing patient 

variability and support the inclusion of aerobic fitness as a biological variable in clinical contexts. 

Doing so may contribute to the personalization of immunotherapy by optimizing dosage and 

frequency of treatment, reducing the risk of cardiotoxicity [111] and other adverse side effects. 

We developed an in silico platform for simulating early-stage solid tumor growth and anti-tumor 

immune response. We calibrated the model with clinical data from exercise oncology 

experiments. We performed two virtual experiments that demonstrate the potential of the 

model in guiding pre-clinical and clinical studies of immunotherapy. The first virtual experiment 

simulates the dynamics between the tumor and the infiltrating immune cells. Such fine-grained 

spatiotemporal dynamics is difficult to probe in pre-clinical studies as it requires significant 

redundancy in lab animals and is prohibitively time-consuming and labor-intensive. The result is 

a series of spatiotemporal snapshots of the tumor and its microenvironment that can serve as a 

platform to test mechanistic hypotheses on the role and dynamics of different immune cells in 

anti-tumor immune response. The second virtual experiment shows how dosage and/or 
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frequency of immunotherapy drugs can be optimized based on the aerobic fitness of the patient, 

so that possible adverse side effects of the treatment can be minimized.   

The model is based on the open-source platform CompuCell (CC3D) and based on previous work 

modeling tumor growth and evolution as a function of available resources [34]. The original 

model focused solely on differential cell-adhesion and somatic evolution. We used the same 

framework to build a model that includes immune cell types, cytokines, chemokines, and 

metabolic signals, and employed it to interrogate immune response to tumor progression as a 

function of aerobic fitness. Our model is a 2D spatiotemporal representation of a cross section in 

the tumor microenvironment (TME). Our basics assumption is that aerobic fitness acts as a tumor 

suppressor through a systemic enhancement of anti-tumor immune response. This systemic 

effect is a result of metabolic and endocrinal modifications, which can be modulated with chronic 

exercise training. While the exact mechanisms behind this effect are currently under 

investigation, documented pre-clinical experiments point at two potential candidates: (1) 

increased trafficking of NK cells into the TME, triggered by up-regulation of epinephrine and (2) 

hypoxia-tolerant suppression of the recruitment of immune inhibitory cells (CD4+FOXP3+ Tregs) 

into the TME which increases cytotoxic T lymphocytes (CD8+ Lymphocytes CTLs) efficiency [113]. 

In the model presented here we chose to focus on candidate (2) but the platform can be easily 

adjusted to incorporate candidate (1) or any other potential mechanism in the future. 

Methods 

Clinical Data 

The clinical data supporting the hypotheses incorporated into the model was obtained from a 

pilot study where 14 recently diagnosed early stage Invasive Ductal Carcinoma post-menopausal 
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patients were subjected to a short submaximal aerobic exercise (for a complete description of 

the study cohort see [114]) and were assigned an aerobic score [115]. Tumor size estimated in 

two time points (the diagnostic mammogram and an earlier mammogram where the radiologist 

could identify the tumor with hindsight), along with the time between the two mammograms, 

yielded an estimation of tumor doubling time for each patient. A statistically significant 

correlation was then detected between the aerobic score and the tumor doubling time: the more 

aerobically fit were the patients, the longer were their doubling times. Further pre-clinical studies 

detailed below allowed us to replicate this phenomenon and to interrogate the potential 

mechanisms underlying it. 

Model Conceptualization 

The model is a spatiotemporal representation of a TME of a solid tumor in its early stages (T0 to 

T1) that includes key aspects of the interactions between tumor cells, the TME, and the host 

immune response. Tumor cells adopt four different phenotypes: “oxphos” (relying mostly on 

oxidative phosphorylation), “glycolytic” (elevated glycolysis when the surrounding tissue 

becomes hypoxic), “necrotic” and “apoptotic”. Tumor cells grow, divide, and invade their 

environment. The growth rate of tumor cells is limited by the availability of oxygen which cells 

consume from the environment. The level of tumor immunogenicity is mediated by aerobic 

tumor cell transition from one metabolic phenotype to another (due to oxygenation levels). As 

oxygen gets depleted, tumor cells change their metabolic phenotype from “oxphos” to 

“glycolytic”. Glycolytic tumor cells can change phenotype back to “oxphos” if the oxygenation of 

the tissue is restored. When oxygen is severely depleted, glycolytic cells become necrotic and die 
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(this phenomenon is typically observed at the tumor core). Glycolytic cells and necrotic cells 

secrete lactate to the TME that serves as a recruiting signal for the tumor promoter cells. 

Our model includes two types of immune cells: CD8+ Lymphocytes Tumor suppressors (“CTLs” in 

our model ) and CD4+FOXP3+ tumor promoters (“Tregs”  in our model). CTLs are constantly 

recruited to the tumor site, infiltrate the TME and induce apoptosis in the tumor cells they come 

into contact with. Upon contact with tumor cells, CTLs also release a cytokine signal to the TME 

(“IFNγ” field), thus attracting other CTLs to their vicinity. The acidification of the TME by the 

glycolytic cells results in recruitment of Tregs to the tumor site. These recruited Tregs move 

through the tissue to areas of higher concentration of Lactate. Tregs inhibit the CTLs they come 

near to. This inhibition prevents CTLs from inducing apoptosis in cancer cells they come into 

contact with.   

We implemented the model in CompuCell3D (CC3D), an open-source modeling environment that 

allows specification and simulation of multicellular models, diffusing fields and biochemical 

networks [37]. CC3D simulates spatial dynamics using the Cellular Potts Model, a modeling 

framework where cells are represented on a lattice and their spatial properties are governed by 

an effective energy function. Spatial dynamics are decided using a Monte Carlo approach, making 

each independent run stochastic, in which time is measured in Monte Carlo steps (MCS). Our 

model is simulated over10V lattice sites representing up to 5 × 10W individual cells. Diffusion 

solvers integrate partial differential equations describing the diffusion of oxygen, Lactate, and 

cytokines across the whole simulation domain. The different outcomes of the simulation are 

dependent on the parameter values associated with aerobic fitness and with the emergent 
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patterns of TME invasion associated with availability of resources and immune response. Figure 

4.1 shows the model conceptualization.  

 

 

Figure 4.1. Model Conceptualization. The model simulates the early stage of 2D solid tumor progression 

from which a growth rate (in terms of tumor area) can be calculated. Once initialized, tumor cells grow in 

the TME, and with time become more glycolytic, at a rate that depends on the host’s aerobic fitness and 

tolerance to hypoxia. Tumor cells die through necrosis or apoptosis (lack of oxygen or death by immune 

response, respectively). Tumor suppressors (“CTLs”) and tumor promoters (“Tregs”) react to cytokine and 

chemoattractant fields secreted by tumor cells. 
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Glycolysis and hypoxia tolerance 

The underlying hypothesis of exercise oncology is that aerobic exercise leads to systemic 

modifications of non-skeletal-muscle tissue. Consistent with several studies that point at hypoxia 

and elevated glycolysis as a hallmark of solid tumor progression [116] we hypothesize further 

that aerobic exercise can modify the tissue’s ability to tolerate hypoxia and to degrade HIF1α, a 

known upstream factor in recruitment of Tregs in the TME. To represent this biological feature 

in our model we introduced the Lactate field (L), secreted by the tumor cells (Fig. 4.2). According 

to our hypothesis, a solid tumor in aerobically fit (sedentary) hosts will generate weak (strong) L 

field depending on that host’s tolerance to hypoxia. This hypothetical differential drives the 

variation in immune response to the solid tumor. The model presented here thus embodies our 

working hypothesis (supported by clinical and pre-clinical studies [117]) that early stage solid 

tumors of aerobically fit individuals – who have higher tolerance to hypoxia – will go through the 

shift from the “oxphos” phenotype to the “glycolytic” phenotype in lower levels of oxygen in the 

TME than sedentary individuals, and, as a result, will exhibit less glycolysis-initiated 

immunosuppressive response than similar tumors of sedentary subjects for the same levels of 

oxygen in the TME. 
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Figure 4.2. Aerobic Fitness Modulates Hypoxia-Tolerance in the TME. While oxygen levels are identical 

in the two examples above, the two representative TME react to them differently: the more aerobically 

fit is the host (FIT), the more tolerant to hypoxia its TME is, and as a result, tumor cells are less glycolytic 

relative to sedentary hosts (SED). 

Immune suppressors and immune promoters dynamics.  

Clinical studies have shown that intratumoral CTLs/Treg ratio is a significant prognostic marker 

for cancer patients [118] and several pre-clinical studies have tied this marker to hypoxic 

conditions in the TME [113]. To represent these biological features in our model we introduced 

two types of immune cells (immune suppressors, or “CTLs” and immune promoters, or “Tregs”) 
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and implemented two scales of trafficking (Fig. 4.3). The first is the appearance of these cells in 

the TME, implemented with different densities; the second is movement within the TME, 

implemented with chemotaxis mechanisms. The seeding rates and densities were calibrated 

using data on respective densities from hot vs. cold tumors in humans [119]. The chemotaxis 

mechanisms are sensitive to two fields. CTLs react to a cytokine secreted by tumor cells killed by 

other CTLs (the “IFNγ” field); Tregs react to the L field secreted into the TME (the more glycolytic 

is the tumor, the stronger is the Treg recruiting signal). 
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Figure 4.3. Aerobic Fitness Modulates Anti-Tumor Immune Response. The more aerobically fit is the host, 

the less glycolytic its tumor cells are relative to a sedentary host. Consequently, recruitment of tumor 
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promoters that can block tumor suppressors is down regulated relative to a sedentary host, and tumor 

growth will be relatively suppressed. Tumor promoters move towards the tumor along the chemo-

attractant gradient that glycolytic tumor cells secrete. Tumor suppressors move towards the tumor along 

a cytokine gradient (“IFNγ”) that necrotic tumor cells secrete. Once infiltrated into the TME, tumor 

promoters can inhibit the ability of nearby tumor promoters to kill tumor cells. 

CompuCell3D Implementation  

We adopted a voxel length of 4μm, such that the each voxel represents an area of 16	𝜇𝑚(. The 

total simulation domain consists of 1000 × 1000	 voxels, corresponding to a tissue cross-section 

of 16	𝑚𝑚(. The initial tumor cell target volume is 256	𝜇𝑚( which is between twice and 3 times 

the average size of epithelial cells [119]. The immune cell target volume is 384	𝜇𝑚(. The initial 

tumor cell surface is 64	𝜇𝑚 and the immune cell target surface is 78.4	𝜇𝑚.The cell surface is 

calculated from the cell volume assuming that the area occupied by cells is a square. Note that 

‘cell volume’ and ‘cell surface’ are CC3D-specific cell properties denoting the number of voxels 

occupied by each cell and the number of outer voxels of each cell respectively. As such, they 

correspond to the cross-sectional area and the perimeter of cells. The MCS to time conversation 

is 6	𝑚𝑖𝑛𝑠. This estimate is based on experimental tumor cell migration speed [34]. For the 

contact energies, we assigned values that result in a highly negative surface tension between 

tumor cells and the surrounding general medium such that tumor cells invade the surrounding 

tissue.  

Simulation parameters corresponding to the spatial properties of human solid tumor cells, 

transport of chemicals and rates of immune response were estimated from the literature. We 

assumed that when sufficient resources are available, tumor cells grow and divide every 24	ℎ𝑟𝑠. 

Conversely, when resources are depleted cells die within 12	ℎ𝑟𝑠, and when CTLs induce 
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apoptosis, cells die within 8	ℎ𝑟𝑠. We estimated the infiltration rates of CTLs (1 cell every 1.5 

hours) and Tregs (1 cell every 1 hour) using intramural density data, showing that the 

“CTL”/“Treg” ratio is 5:1 [120]. We assumed that the homeostatic concentration of oxygen in 

tissue is 4.3 × 10XW𝑀𝑜𝑙/𝐿 [121]. Aerobic fitness was defined as the oxygen concentration 

threshold at which tumor cells changed from “oxphos” to “glycolytic”. Different virtual 

populations were defined with respect to different thresholds. The more aerobically fit a virtual 

subject is, the more tolerant its tissue will be to hypoxia, and as a result, the threshold for the 

shift from “oxphos” to “glycolytic” is lower. These parameters are CC3D-specific and the values 

are shown in Table 4.1. 

Conversion Factors 

MCS 360.0 s 

Lattice length 4.0 um 

Concentration conversion factor 1.0 X 10 16 mol 

Parameter Symbol Value 

Initial target volume tumor cell (Eq 4.1) 𝑉- 	 256 um^2 

Lambda volume (Eq 4.1) 𝜆	.49 	 16 

Initial target surface tumor cell 𝑆- 	 64 um 

Lambda surface 𝜆	@0/ 	 16 

Target volume immune cell (Eq 4.1) 𝑉- 	 384 um^2 

Lambda volume (Eq 4.1) 𝜆	.49 	 24 

Target surface immune  cell 𝑆- 	 78.4 um 

Lambda surface 𝜆	@0/ 	 19.6 

Membrane fluctuation (Eq 4.2) 𝑇 50.0 
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Oxygen diffusion coefficient (Eq 4.3) 𝐷Y 1460.0  um^2/s 

Oxygen uptake by OXPHOS tumor cells (Eq 4.3) 𝑑YZRIYS 6.00 x 10-17 mol/(cell*s) 

Global oxygen decay rate (Eq 4.3) 𝑑B94E89  0.01 1/s 

Oxygen production by Medium (Eq. 4.3) 𝑃D>F)07 8..00 x 10-16 mol/s 

Chemoattractant diffusion coefficient (Eq 4.4) 𝐷[ 0.1 um^2/s 

Chemoattractant decay rate (Eq 4.4) 𝑑[ 1.0 x 10-7 1/s 

Chemoattractant production by glycolytic c cells (Eq 
4.4) 

𝑃[XO9" 7.52 x 10-17 mol/(cell*s) 

IFN-γ diffusion coefficient (Eq 4.5) 𝐷HN! 0.1 um^2/s 

IFN-γ  decay rate (Eq 4.5) 𝑑HN! 1.0 x 10-7 1/s 

IFN-γ  production by tumor suppressor cells (Eq 4.5) 𝑃HN!XH7706> 7.52 x 10-17 mol/(cell*s) 

Fitness Threshold (eq 4.6a,b) 𝐹2 [2.34x10^-4 to 9.38x10^-5] 
mol/L 

Necrotic Threshold (eq 4.7) 𝑁2 6.25 x 10-5 mol/L 

Cell Transition Probability (eqs 4.6-4.7) 𝑇𝑃 0.000111 1/s 

Maximum tumor growth rate (Eq 4.8) 𝐺 2.96 x 10-3 um^2/s 

Oxygen concentration at which  tumor growth rate 
is half maximum (Eq 4.9) 

𝐾Y  2.15 x 10 -4 mol/L 

Chemotaxis sensitivity of tumor suppressors to 
oxygen field (Eq 4.10) 

 𝜆YXS011 -500 

Chemotaxis sensitivity of tumor suppressors to IFN 
field (Eq 4.10) 

𝜆HN!XS011 500 

Chemotaxis sensitivity of tumor promoters to 
chemoattractant field (Eq 4.10) 

𝜆[XR/47 500 

Recruitment rate of tumor suppressor immune cells 
(Eq 4.11) 

𝑅S011 0.0111 cell/s 

Recruitment rate of tumor suppressor  
immune cells (Eq 4.11) 

𝑅R/47 0.0167 cell/s 
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Apoptosis rate (Eq 4.12) 𝐴 3.70 x 10-4 um^2/s 

Tumor promoter inhibition radius (Eq 4.13) 𝐼F  96 um 

Table 4.1 CompuCell 3D Simulation Parameters 

Cell Types 

‘Cell types’ are CC3D-specific attributes that allow to classify individual cells based on different 

phenotypes and behaviors. We represented the different population of cells in the TME by 

including four types of tumor (OXPHOS, Glycolytic, Necrotic and Apoptotic) cells and two types 

of immune cells (Tumor Suppressors and Tumor Promoters). OXPHOS represents tumor cells that 

mostly rely on oxidative phosphorylation as their main metabolic pathway. Glycolytic represents 

tumor cells that mostly rely on glycolysis as their main metabolic pathway. OXPHOS and glycolytic 

tumor cells grow and divide at the same rate based on the availability of metabolic resources. 

OXPHOS cells rapidly consume oxygen from the TME while glycolytic cells produce pro and anti-

inflammatory signals that recruit immune cells. Necrotic represents tumor cells at the necrotic 

core of the tumor dying due to lack of metabolic resources. Necrotic cells also produce 

proinflammatory and anti-inflammatory signals. Apoptotic represents tumor cells undergoing 

apoptosis due to immune cell-mediated cytotoxicity. Apoptotic tumor cells shrink and die. Tumor 

Suppressors represent cytotoxic immune cells that can induce apoptosis in the tumor cells they 

encounter. The cytotoxic mechanism is described in Immune Cell Cytotoxicity. Tumor suppressors 

have two states: active or inhibited. ‘Active tumor suppressors’ are capable of inducing apoptosis 

whereas ‘Inhibited tumor suppressors’ are not. Tumor Promoters immune cells represent the 

anti-inflammatory response of the immune system by inducing the transition of tumor 
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suppressors from active to inhibited. Figure 4.1 shows the different cell types, their interactions 

and transitions.  

Chemical Fields and Diffusion 

Oxygen Transport.  

Although tumor growth in vivo depends on multiple chemical substances (including glucose, 

growth factors, fatty acids) we introduce the chemical field oxygen (O) to represent both tissue 

oxygenation and availability of other metabolic resources. The change in concentration of O is 

calculated by solving the reaction-diffusion equation at each location in the simulation domain: 

UY(#)
U2

= 𝐷Y𝛻(𝑂(𝑥) − 𝑑YXYZRIYS𝑂(𝑥) 	− 𝑑Y	𝑂(𝑥) 	+ 𝑃YXD>F)07(𝑥)(3)  (4.1) 

where𝐷Y is the diffusion coefficient of oxygen, 𝑑YXYZRIYS is the decay rate of oxygen inside 

OXPHOS cells (accounting for the oxygen consumption by cells relaying in oxidative 

phosphorylation), 𝑑Y	𝑂 is the global decay rate of oxygen inside all other cells (accounting for 

consumption and decay of oxygen in general tissue) and 𝑃YXD>F)07 is the production rate of 

oxygen by medium (representing oxygenation from blood vessels).  

Parameter estimation. Based on in vitro assays, we assumed that the homeostatic oxygen tension 

of tissue (in the absence of tumor cells) is 4.3 × 10XW𝑀𝑜𝑙/𝐿 [121]. We followed the same method 

as Maciek et al [34], to determine the rate of oxygen production by Medium by assuming that in 

real tissue stromal cells consume oxygen at a rate 4.3 × 10X=Q𝑀𝑜𝑙/(𝑐𝑒𝑙𝑙 × 𝑠) and that stromal 

cells occupy  20% of the TME [122]. To maintain a steady state concentration of oxygen, the 

production rate of oxygen by Medium is 4.3 × 10X=V𝑀𝑜𝑙/𝑠 and the global decay rate of Oxygen 

is 0.01	𝑠X=. We assumed that at the steady state levels, tumor cells consume oxygen at a rate 
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6.0 × 10X=Q𝑚𝑜𝑙/(𝑐𝑒𝑙𝑙 × 𝑠), 3 times faster than stromal cells because of higher metabolic 

demands. The diffusion coefficient of oxygen in water is 1460	𝜇𝑚(/𝑠 [123]. 

Chemoattractant Transport. We introduced the chemical field chemoattractant (L) to represent 

the signaling cascade that starts with HIF1a stabilization, higher ratio of glycolysis to OXPHOS, 

lactate secretion and production of chemokines such as CCL-28 that recruit Tregs into the TME 

[124]. The change in concentration of L is calculated by solving the reaction-diffusion equation at 

each location in the simulation domain: 

U[(#)
U2

= 𝐷[𝛻(𝐿(𝑥) − 𝑑[𝐿(𝑥) 	+ 𝑃[XO9"(𝑥) (4.2) 

where 𝐷[ is the diffusion coefficient of the chemoattractant, 𝑑[s the decay rate of the 

chemoattractant in the TME and𝑃[XO9" is the production rate of chemoattractant by glycolytic 

cells. Although in vivo, every cell produces lactate as a byproduct of their metabolism, our 

chemical field L represents the excess of lactate produced by cells with a higher ratio of glycolysis 

to OXPHOS. 

Parameter Estimation. The diffusion coefficient of the chemoattractant is in same order of 

magnitude of the diffusion coefficient of glucose: 0.1	𝜇𝑚(/𝑠 [125]. We assumed that the 

chemoattractant signal is short ranged, such that the diffusion length of the signal is 3 cell 

diameters (48	𝜇𝑚). Based on this assumption, we estimated the decay rate of the 

chemoattractant to be: 1.0	 × 10XQ	𝑠X=. Glycolytic cells produce chemoattractant at the same 

rate cells produce lactate in vitro: 7.52 × 10X=Q𝑚𝑜𝑙/(𝑐𝑒𝑙𝑙 × 𝑠) [126].  

IFN-γ. Active immune cells relay information and recruit more immune cells by secreting a variety 

of chemokines. We simplified the complexity of immune cell signaling by introducing a single 
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chemical field IFN-γ (IFN). The change in concentration of IFN is calculated by solving the reaction-

diffusion equation at each location in the simulation domain: 

UHN!(#)
U2

= 𝐷HN!𝛻(𝐼𝐹𝑁(𝑥) − 𝑑HN!𝐼𝐹𝑁(𝑥) 	+ 𝑃HN!XH7706>(𝑥) (4.3) 

where 𝐷HN! is the diffusion coefficient of IFN, 𝑑HN! is the decay rate of IFN in the TME and 

𝑃HN!XH7706> is the production rate of IFN by tumor suppressor cells.  

Parameter Estimation. Given we are modeling the TME, in this short scale we can assume the 

same transport coefficients for the IFN field and the chemoattractant field. The real-life 

difference between the two (the diffusivity of IFN is two orders of magnitude faster [127]) is small 

given the role the field play in the model, namely, the gradient that provides recruitment and 

chemotaxis signals.  

Tumor Cell Transitions 

The transition between OXPHOS and glycolytic types is determined by the amount of oxygen 

available to the cell and the fitness threshold (a parameter that represents the overall aerobic 

fitness of the patient). 

𝑃*𝜎(𝑂𝑋𝑃𝐻𝑂𝑆) → 𝜎(𝐺𝑙𝑦𝑐𝑜𝑙𝑦𝑡𝑖𝑐), = 𝑇𝑃 𝑖𝑓	𝑂(𝜎?47) < 𝐹2 (4.4a) 

𝑃(𝜎(𝐺𝑙𝑦𝑐𝑜𝑙𝑦𝑡𝑖𝑐) → 𝜎(𝑂𝑋𝑃𝐻𝑂𝑆)) 	= 𝑇𝑃	𝑖𝑓	𝑂(𝜎?47) > 𝐹2 (4.4b) 

Where 𝜎(𝑂𝑋𝑃𝐻𝑂𝑆) represents the cell type OXPHOS, 𝜎(𝐺𝑙𝑦𝑐𝑜𝑙𝑦𝑡𝑖𝑐) represents the cell type 

Glycolytic, 𝜎?47 represents the concentration of oxygen at the center of mass of the cell. The 

fitness parameter 𝐹2 represents the oxygen concentration at which tumor cells switch metabolic 

profile. Equation 4.4a describes the transition probability 𝑇𝑃 from OXPHOS to Glycolytic when 

the oxygen concentration drops below the fitness threshold 𝐹2. Equation 4.4b describes the 

transition probability 𝑇𝑃 from Glycolytic to OXPHOS when the oxygen concentration increases 
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above the fitness threshold 𝐹2. Both OXPHOS and Glycolytic cells can transition to the Necrotic 

cell type if the oxygen available to the cell drops below the necrotic threshold. 

𝑃(𝜎(𝑂𝑋𝑃𝑂𝑆	𝑜𝑟	𝐺𝑙𝑦𝑐𝑜𝑙𝑦𝑡𝑖𝑐) → 𝜎(𝑁𝑒𝑐𝑟𝑜𝑡𝑖𝑐)) 	= 𝑇𝑃 		𝑖𝑓	𝑂(𝜎?47) 	< 𝑁2(4.5) 

Where 𝜎(𝑁𝑒𝑐𝑟𝑜𝑡𝑖𝑐) represents the cell type Necrotic and 𝑁2 is the oxygen concentration below 

which tumor cells transition to Necrotic. Tumor cells can also transition to the Apoptotic cell type 

if they encounter an active tumor suppressor immune cell.  

Parameter Estimation. The transition probability was determined assuming that tumor cells 

persist in their current state for 2.5	ℎ𝑟𝑠 after the metabolic resources in their environment 

dropped below a certain threshold. The ranges of the fitness threshold were determined by the 

sensibility analysis. The fitness parameter is related to the experimental fitness score by the 

following linear relation: 1.85 × 𝐹2 + 0.08. The necrotic threshold was determined by assuming 

that cells become necrotic when the oxygen tension drops below 10% of the steady state 

concentration of oxygen in the tissue [128].  

Cell Growth and Mitosis 

Although we do not model the cell cycle explicitly, we represent it implicitly by having tumor cells 

grow and divide once they have doubled their volume. We assumed that tumor cells divide at a 

rate that is independent of their glycolysis/OXPHOS ratio. “Sedentary” and “trained” tumors 

show similar KI-67 levels [129]. The cell volume growth rate is a function of the local availability 

of oxygen, which in this case represents metabolic resources:  

UJ($)
U2

= 𝐺 Y($)A	

Y($)A<PB
A 	(4.6) 

where 𝑉 is the target volume of the cell 𝜎, 𝐺 is the maximum growth rate of individual tumor 

cells, 𝑂 is the concentration of oxygen at the center of mass of cell 𝜎 and 𝐾Y  is the concentration 
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of oxygen at which the growth rate decreases to half maximum. We assumed this Michaelis-

Menten form for the growth rate to model a smooth transition between actively dividing and 

quiescent tumor cells. Although the target volume of the cell increases at a rate that is dependent 

only on the availability of oxygen, the actual volume of the cell depends on other factors, such as 

availability of space. The target surface of the cell was also adjusted such that 𝑆(𝜎) = 4�𝑉(𝜎), 

where 𝑆 is the new target surface of the growing tumor cell 𝜎.The plane of division was assumed 

to be random. 

Parameter estimation. We assumed that the average time for tumor cell division is 24 hours. 

Since cells must double their initial target volume to divide, we estimated the maximum growth 

rate of the cell to be 2.96 × 10X\	𝜇𝑚(/𝑠. The parameter 𝐾Y  is the oxygen concentration at 

which the growth rate is half maximum (𝐺/2) and we assume this threshold is reached when the 

oxygen concentration inside the tumor drops to half the steady state oxygen tension in tissue 

2.15 × 10XW	𝑚𝑜𝑙/𝐿. The growth rate is the same for OXPHOS and glycolytic cells.  

Chemotaxis 

Immune cells respond to chemokine signals in the TME and can actively migrate to areas of higher 

concentrations of such signals. In particular, IFNγ enhances the cytolytic ability and the 

kinematics of Cytotoxic CD8+ T lymphocytes (CTL) both by paracrine and autocrine signaling 

mechanisms. CTLs’ search patterns in peripheral tissues are mainly dictated by informed motion 

in which haptotaxis and haptokinesis cues restrict their movements, and chemoattractants guide 

them through signaling gradients. To model CTL migration inside the tumor, we assumed that 

tumor suppressors migrate against the gradient of the oxygen field, which is an indicator of highly 

proliferative tumor cells. We assume that both immune tumor promoters are attracted by the 
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chemoattractant field, which drives immune cell migration to highly glycolytic areas of the TME. 

We also assume that immune tumor suppressors are attracted by the IFNγ field, which drives 

them to areas of high density of active immune suppressors. In CPM, chemotaxis is represented 

as an additional energy term in the effective energy function H. The change in energy due to 

chemotaxis is calculated by considering the chemotactic force that favors voxel attempts in which 

cells move up or down the gradient of the field. The chemotactic force exerted over each voxel 

of the cells is given by: 

𝐹?3>7(𝑥) =
]'C

=<5C($)
𝛻𝑓)(𝑥) (4.7) 

where 𝜆5C is the chemotactic sensitivity parameter of the cell at position 𝑥 to the chemical field 

𝐹), 𝑓)(𝜎) is the concentration of the field at the center of mass of cell σ, and 𝛻𝑓)(𝑥)	is the gradient 

of the field at position 𝑥 with respect to the source voxel. Parameters 𝜆(YXS011) and 𝜆(HN!XS011) 

are the sensitivity of tumor suppressors to the oxygen and the IFNγ fields, respectively. 

Parameter 𝜆([XR/47) is the sensitivity of tumor promoters to the chemoattractant field. 

Parameter estimation. The chemotactic sensitivity 𝜆5C  parameter is a CPM-specific parameter, 

and as such does not correspond to a measurable experimental quantity. However, since 𝜆5C  

modulates the chemotactic strength and the speed of cell migration, we chose values of −500 

and 500  for 𝜆(HN!XS011) and 𝜆([XR/47) such that immune cells migrate faster than tumor cells 

and penetrate the highly packed tumor while still preserving their shape.  

Immune Cell Recruitment 

Our model currently covers the TME only and thus ignores the complex signaling networks behind 

immune cells migration, search strategies and recruiting mechanisms from the lymphoid organs 

to target organs. We model the recruitment of Immune cells into the TME by assigning 
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probabilities to different immune cells appearing in the TME. In the case of a tumor suppressor 

immune cell, the probability is constant: 

𝑃𝑟 (𝑎𝑑𝑑𝑖𝑛𝑔	𝑡𝑢𝑚𝑜𝑟	𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑜𝑟) = 𝑅S011 (4.8) 

Where 𝑅S011 is the probability per simulation unit time. To determine the seeding location of the 

tumor suppressor, the simulation space is randomly sampled 6 times, and a tumor suppressor 

immune cell is seeded at the unoccupied location with the highest amount of the IFN field. The 

immune cell is not seeded if none of the 6 locations is unoccupied. The probability of adding a 

tumor promoter immune cell depends on the fraction of glycolytic cells to all proliferative tumor 

cells, which we use as a proxy of the glycolytic state of the tumor. 

𝑃𝑟 (𝑎𝑑𝑑𝑖𝑛𝑔	𝑡𝑢𝑚𝑜𝑟	𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑟) = 𝑅R/47
!D&,

!BE@<!D&,
 (4.9) 

Where 𝑅R/47 is the maximum probability per simulation unit time, 𝑁O9" is the number of 

glycolytic tumor cells and 𝑁YZR is the number of OXPHOS tumor cells. To determine the seeding 

location of the tumor promoter, the simulation space is randomly sampled 6 times, and a tumor 

promoter immune cell is seeded at the unoccupied location with the highest amount of the 

chemoattractant field. The immune cell is not seeded if none of the 6 locations is unoccupied. 

Once the cells are in the TME, they react to their respective recruiting signals: Tumor suppressors 

move along the oxygen and the IFNγ gradient and immune suppressors move along the 

chemoattractant. 

Parameter estimation. The constant recruitment rate of tumor suppressors was determined such 

that at the end of the simulation, the density of tumor cells was 50	𝑐𝑒𝑙𝑙𝑠/𝑚𝑚(. This density is 

10 times smaller than the average density observed in vivo [120]. This scaling factor was adopted 

because of limitations to the spatial dimensions of the immune cells imposed by their interactions 
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with the tumor. The recruitment rate of tumor promoters was calibrated such that by the end of 

the simulation, the average density of tumor suppressors was half of the density of tumor 

promoters and ranged from 1:8 to 1:1 [130].  

Immune Cell Cytotoxicity 

CTLs are found in many solid tumors and provide an attractive target for immunotherapeutic 

manipulation. We modeled CTL-mediated cytotoxicity by having tumor suppressors kill all the 

tumor cells they come in contact with. When a tumor suppressor cell encounters a tumor cell, 

the tumor cell transitions to an apoptotic tumor cell. To model cell death, the target volume of 

the apoptotic cell decreases at a constant rate: 

UJ($)
U2

= −𝐴 (4.10) 

where 𝑉 is the target volume of the cell 𝜎, Ais the death rate of the apoptotic tumor cell. Since 

we assume that our cells occupy the space of a square, the target volume of the cell was also 

adjusted such that 𝑆(𝜎) = 4�𝑉(𝜎), where 𝑆 is the target surface of the apoptotic tumor cell 𝜎. 

We assumed that tumor suppressors can kill more than one target tumor cell at a time. 

Parameter Estimation. We assumed that a tumor cell dies after 12	ℎ𝑟𝑠 of encountering a CTL cell. 

This number is relatively low death rate compared to the experimental observation that 

apoptotic cells die within an hour of encountering cytotoxic immune cells. We justify this choice 

of parameter value by noting that our tumor suppressor cells kill multiple cells at a time (from 1 

to 6), such that the effective per CTL killing rate varies from 12	to 2	ℎ𝑟𝑠 [131].  

Immune Cell Inhibition 

Foxp3+ T regulatory (Treg) cells are an important population of leukocytes that control immunity, 

mainly by dampening effector T cell responses. We assumed that CTL inhibition occurs either by 
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contact with Trges or via inhibitory molecules secreted by Tregs (e.g., transforming growth factor 

(TGF)-β, IL-10, and IL-35 that bind to immune cells and result in immunosuppressive effects). We 

modeled the inhibitory effect of Tregs by having tumor suppressor become inhibited if they were 

within a given distance of a tumor promoter immune cell. We measure the distance between the 

center of mass of every tumor promoter cell and every tumor suppressor. If the tumor suppressor 

is within the inhibition radius of a tumor promoter, then it changes type to inhibited. Inhibited 

tumor suppressors can become active if they move away from the inhibition radius of the tumor 

promoter.  

𝐼F ≥ �(𝑋(𝜎)(𝑠𝑢𝑝𝑝) − 𝑋(𝜎*(𝑝𝑟𝑜𝑚))( + (𝑌(𝜎)(𝑠𝑢𝑝𝑝) − 𝑌(𝜎*(𝑝𝑟𝑜𝑚))( (4.11) 

where 𝑋(𝜎)(𝑠𝑢𝑝𝑝)) is the position of the center of mass of tumor suppressor cell 𝜎)  in the 𝑥 

dimension, 𝑋(𝜎*(𝑝𝑟𝑜𝑚)) is the position of the center of mass of tumor promoter cell 𝜎*  in the 𝑥 

dimension, 𝑌(𝜎)(𝑠𝑢𝑝𝑝))  is the position of the center of mass of tumor suppressor cell 𝜎)  in the 

y dimension, 𝑌(𝜎*(𝑝𝑟𝑜𝑚)) is the position of the center of mass of tumor promoter cell 𝜎*  in the 

y dimension and 𝐼F  is the inhibition radius. 

Parameter Estimation. We assumed that the effect of inhibitory molecules secreted by regulatory 

immune cells into the TME span over six cell diameters (96	𝜇𝑚). This assumption is justified 

because inhibition by T-regs occurs not only by contact, but also by secretion of inhibitory 

chemokines.  

Immunotherapy 

In this paper we focused on ICI (Immune Checkpoint Inhibitors) which mirror the effect of 

immune suppressors. For this reason, and as recently shown in vivo we assumed a tradeoff 

between immune suppressors density in the TME (which is a function of aerobic fitness, 
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according to our hypothesis) and ICI dosage. When the dosage is personalized to the subject’s 

aerobic fitness the more aerobically fit the subject, the lower dosage of ICI they can be given, 

with similar tumor reduction outcomes relative to a sedentary subject, but with lower 

cytotoxicity. We model the mechanism of action of ICI dosage by reducing the inhibition radius 

of tumor promoters. ICI dosages are represented as different magnitudes of the reduction in the 

inhibition radius. ICI-associated cytotoxicity is measured as the additional exposure (area under 

the curve) to IFNγ produced by tumor suppressors with respect to the baseline (no treatment).  

Calibration 

Effect of aerobic fitness on tumor progression rate.  

We simulated our model for a virtual cohort of 200 virtual subjects divided into 10 aerobic fitness 

levels. Sensitivity analysis on the aerobic fitness parameter detected the upper and lower bounds 

below and above which changing the fitness parameter has no significant effects on tumor 

growth. Table 4.2 shows the p-values between the different groups. The model connects 

variations in fitness levels to variations in anti-tumor immune response and consequently to 

variations in tumor growth rates. To calibrate the fitness parameter it we matched it to clinical 

results from breast cancer patients (where the aforementioned aerobic score metric was used, 

and the study relied on hindsight from pre-diagnostic screening mammograms to estimate tumor 

growth rates in 14 recently diagnosed patients) [114]. The model yielded a classification of 

distinct aerobic fitness levels, each of which results in a distinct tumor growth curve (Fig. 4.4A). 

A similar effect of suppression of tumor growth when inoculation followed endurance exercise 

was qualitatively demonstrated in pre-clinical studies [132]. These values were then matched to 
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the fitness score reported in [114] (where athletes were scored below 0.5 and sedentary above 

2 based on their cardiorespiratory fitness (Fig. 4.4B,C)). 

Fitness Parameter Pair p-value 

0.05 - 0.06 0.7376007368052694 

0.06 - 0.07 0.17069549494379443 

0.07 - 0.08 0.13780438758905694 

0.08 - 0.09 0.09456554045876897 

0.09-0.10 0.23643686583200896 

0.10-0.11 0.11812682730957082 

0.11-0.12 0.34610341421792135 

0.12-0.13 0.21273526017530378 

0.13-0.14 0.10195752002748157 

0.-14-0.15 0.03583599939175715 

0.15-0.16 0.41735667350462025 

Table 4.2. Sensitivity between fitness groups.  
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Figure 4.4. Effect of aerobic fitness on tumor progression rate. The model was simulated for 200 virtual 

subjects, divided into 10 distinct aerobic fitness levels, each with 20 subjects. Each fitness level generated 

an average growth rate (4A). These average growth rates were plotted against the fitness levels on a 

logarithmic scale (4B). The model behaves qualitatively in accordance with a similar plot of tumor doubling 

times vs. fitness levels from a pilot study in 14 recently diagnosed T1 invasive ductal carcinoma post-

menopausal patients (4C, “Data”) [114]. The comparison between the two correlations (the observed and 

the mechanistically generated by the model) can be used to further constrain further calibrations of model 

parameters. 

Prevalence of clinical tumors in athletes vs. non-athletes.   
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To identify a fitness threshold that can match real-life aerobically fit from sedentary subjects with 

the fitness parameter in our model we used epidemiological studies on tumor incidence among 

athletes and non-athletes [111] (Fig. 4.6A). The comparison allowed us to designate as “athletes” 

populations whose fitness parameter value in our model is below 0.060, and sedentary whose 

fitness parameter value in our model is above 0.150 (Fig. 4.6B). Lacking additional granularity of 

staging variations upon detection in both parameter values groups, we limited this calibration to 

the identification of a biologically significant spatiotemporal scale for the model: the incidence 

ratio observed in athletes and non-athletes humans is achieved in our model for tumor size of 

2.9mm and after 13,000 MCS (equivalent to 54 days in real life, and 7 hrs in our simulation) (Fig. 

4.6B). Assuming a clinical (detectable) tumor threshold is 2mm, we can use the incidence ratio to 

compare the scale of our virtual platform to clinical data: our simulated tumors are at least at a 

scale of ~ 3:2 (thus within the same spatial order of magnitude of a real tumor). 

 

Figure 6. Prevalence of clinical tumors in athletes vs. non-athletes. Epidemiological data shows prevalence 

of solid tumors in non-athletes to be around twice the prevalence in athletes (6A) [3]. We used this data 

point to extract a spatiotemporal calibration of the model by running 40 subjects, aerobically fit and 
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sedentary, and identifying the tumor size (in terms of tumor area) and the time after initiation of 200 cells 

(in model time steps MCS) in which such a prevalence ratio is achieved (6B). The prevalence ratio allows 

us to impose a spatiotemporal scale on our model (in this case, a scale of 3:2 between model to reality). 

Results 

Time series of anti-tumor immune response in the TME.  

Our first virtual experiment probes the intricate dynamics in the TME between the tumor and the 

infiltrating immune cells. Such dynamics is impossible to probe in humans and is hard to observe 

during a pre-clinical study as it requires significant of redundancy in lab animals (so to achieve 

high resolution with statistical significance for successive endpoints during the experiment), 

prohibiting such time and labor-intensive studies. Our simulation generates, with no physical 

cost, a time series of spatiotemporal snapshots of the TME (Fig. 4.7) that can serve as a platform 

to test several mechanistic hypotheses on the role and dynamics of different immune cells in ant-

tumor immune response, by comparing it to immunohistochemistry slides from different stages 

of tumor development. While here we focused only on two types of immune cells (“CTLs” and 

“Tregs”), and two types of signaling fields (“IFNγ” and “chemoattractant”, or L), the platform is 

modular and can incorporate many more cells and fields (hence more pre-clinical end points) 

with relatively small modifications. 
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Figure 4.7. Time series of TME sections in early stage progression of a solid tumor. To probe the intricate 

dynamics of anti-tumor immune response in the early stages of a solid tumor progression, the model can 

yield an observation window into the TME in different stages of growth (7A-D), and can be used to test 

competing hypotheses on tumor immune cells population dynamics by comparing these snapshots to real 

life immunohistochemistry end points (7E, [25]), where cross sections from exercised (“FIT”) and 

sedentary (“SED”) mice show different intratumoral CD8+/ CD4+FOXP3+ ratios. 

Incorporating aerobic fitness into the personalization of immunotherapy.  

While showing remarkable success in some patients, immunotherapy treatments can lead to 

severe autoimmune adverse effects such as myocarditis, pericardial diseases, and vasculitis, 

including temporal-arteritis and vision loss [111]. To mitigate these adverse effects, careful 

dosing is essential. There is independent support for our hypothesis on aerobic fitness as a 

biological variable from pre-clinical studies on the combination of Immune Checkpoint Inhibitors 
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(ICI) with aerobic exercise [133] and from small pre-treatment exercise intervention in humans 

[129], and our own clinical pilot study [114] (Fig. 4.8F) . Aerobically fit patients may require lower 

dosage of ICI than sedentary patients, which may lead to personalization of treatment and 

reduction of adverse effects. We implemented ICI in our model as an increased efficacy of CTLs 

killing, by limiting the inhibitory radius of the “Trges”. Cytotoxicity was then quantified with the 

“IFNγ” field, where the probability of an adverse effect [134] increased exposure to the cytokine. 

Performing a virtual experiment on both aerobically fit and sedentary virtual subject populations 

treated with ICI shows how aerobically fit subjects are more prone to adverse effects than their 

sedentary counterparts without mitigating dosing (Fig. 4.8A,B). Conversely, lowering the dosage 

of ICI for aerobically fit patients can achieve the same reduction of tumor growth relative to their 

sedentary counterparts but with a lower probability for adverse effects (Fig. 4.8C,D). In order to 

translate this result to a clinical setting future studies should identify potential markers of aerobic 

fitness with which such personalization can be accomplished and clinical studies could test the 

appropriate dosage of ICI in sedentary vs aerobically fit patients (Fig 4.8E,F,). 
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Figure 4.8. Precision immunotherapy. Aerobically fit patients may require smaller dosage of ICI than 

sedentary patients, which may lead to personalization of treatment and reduction of adverse effects. 

Without a mitigated dosage, aerobically fit subjects are more prone to ICI adverse effects than their 

sedentary counterparts (4.8A,B). Lowering the dosage of ICI for aerobically fit patients relative to their 

sedentary counterparts can achieve the same reduction in tumor growth (4.8C) but with a lower added 

toxicity hence lower probability for adverse effects (4.8D). As a result of the ICI, the two tumors in 8E 

(sedentary and fit hosts), treated with high and low dosage, respectively, are of the same size, regardless 

of their initial immunogenicity. IHC of fast and slow growing Invasive Ductal Carcinomas in human females 

from the study reported in [114] show respectively lower and higher ratios of CD4+FOXP3+ to CD8+ T cells 

(4.8F). 

Discussion 

After calibrating our model with clinical and epidemiological data, we performed two virtual 

experiments that showcase the potential usefulness of the model as a tool to guide and improve 

pre-clinical and clinical studies. We have shown how to generate a time series of TME snapshots 
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during anti-tumor immune response, and how to personalize dosing of ICI for aerobically fit 

patients in order to lower the risk of adverse effects. Further collaboration with cancer biologists 

and would allow to use the model for improving in vivo experimental design and personalization 

of clinical outcomes 

Endurance exercise has been shown to be a systemic modulator of metabolic and endocrinal 

activities, and, through these, a modulator of immune competence and a natural element in 

cancer prevention. Here we propose to treat aerobic fitness as a biological variable that can be 

incorporated into cancer immunotherapy and improve personalization of treatment. The exact 

underlying mechanisms behind the suppressive effects of aerobic exercise on early tumor 

progression are currently unknown. Several pre-clinical studies have narrowed the possibility 

space down to two main hypotheses [135]. The first involves exercise-induced up-regulation of 

epinephrine that mobilizes NK cells into the TME [112] together with increased trans-signaling of 

IL-6 [136] as a re-distributing factor (increased adhesion, infiltration and activation). However, 

these effects were induced on mice by exposing them to voluntary running and their human 

relevance is suspect [137]. Voluntary running in mice mimics high intensity interval training (HIIT) 

in humans, and no human, even an elite athlete, can endure the level of HIIT exhibited in those 

studies [138]. Since there are currently no experiments testing this hypothesis with more human-

relevant, lower HIIT levels and since our goal is to use the model for personalization of patient 

outcomes, our model focuses on the second candidate the human-relevance of which is more 

significant.  

This second hypothesis connects exercise-induced increased hypoxia-tolerance to more efficient 

anti-tumor immune response and requires chronic endurance training (CET) which can be 
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achieved in pre-clinical exercise oncology with forced running wheels [137]. The idea here is that 

CET induces hypoxia tolerance in the skeletal muscles and in other tissues, and as a result, TMEs 

are more susceptible to the degradation of HIF1α [124]. This degradation is an upstream factor 

in a signaling cascade leading to increased anti-tumor immune efficiency, as HIF1α is known to 

recruit Trges into the tumor micro-environment via myokine signaling [139]. Our pre-clinical 

study detected a twofold decrease in intratumoral Tregs/CTLs ratio in exercised mice relative to 

their sedentary counterparts [132]. Attempts to utilize aerobic fitness as a predictor for patient 

outcomes are not new. For example, frailty indices (which include aerobic fitness, or lack thereof, 

as one of their components) have been recently used to predict adverse health outcomes in 

cancer patients post surgery or chemotherapy [140].   

To obtain simulation results in a reasonable time we must limit the computational cost. 

Consequently, our grid size is currently bounded by 5.0 × 10Wcells. The model was simulated as 

a two-dimensional domain. Specific circumstances may require scaling up to 3D (e.g., 

angiogenesis). For most clinical endpoints a cross section of the TME may be a good 

approximation. The model presented here includes only two types of immune cells: tumor 

suppressors and immune inhibitors (or tumor promoters). We deliberately chose to start from 

the simplest model under the assumption that any introduction of additional immune cells could 

increase the ability of the model to replicate observed phenomena, rather than decrease it.  

Increasing the number of immune cell types and chemical fields would add complexity (and 

computational cost) to the model. A direct dialogue between model developers and clinicians 

may help optimize the model for each specific usage. We deliberately calibrated the model solely 

with quantitative clinical and epidemiological data and limited the usage of pre-clinical studies to 
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qualitatively probing mechanistic hypotheses. The model faces a challenge prevalent in 

biomedical research in general: spatiotemporal scaling between mice models and human 

models. If the different components of the model are calibrated separately, series from pre-

clinical simulations could be compared to observed clinical endpoints to help to characterize the 

scaling between murine and human immunological clocks. 

Perhaps more than any other therapy, cancer immunotherapy is particularly sensitive to timing 

[141]. Efforts invested in examination of combination dose scheduling can yield qualitatively 

significant returns in terms of improved efficacy and decreased toxicity; all without necessitating 

regulatory approval. The in silico platform is a safe playground for such experimentation in 

dosage scheduling and frequency, as it can easily allow modulation of duration and timing to 

achieve the most effective treatment, thus ruling out extreme scenarios and refocusing the 

researcher on an optimal treatment window. Our platform can easily incorporate and test 

combination of different types of immunotherapies with other standard-of-care therapies [142] 

and probe potential synergistic effects. For example, since aerobic exercise promotes 

oxygenation, it can mimic the effects of Anti Angiogenic Therapy, where different aerobic fitness 

levels can be calibrated to represent different dosage of such a therapy.  
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Multicellular Spatial Model of RSV-HMPV Co-Infection In Vitro Suggests Viral Competition 

Cannot Recapitulate Experimental Data 

Introduction 

Respiratory viral infections are a leading cause of hospitalization and death worldwide [21]. These 

diseases are caused by viruses, such as influenza A virus (IAV), parainfluenza virus (PIV), 

respiratory syncytial virus (RSV), rhinoviruses (RV), human metapneumovirus (HMPV), and 

coronaviruses (CoVs). These viruses often cause seasonal outbreaks and can simultaneously 

circulate [21]. RSV and HMPV are amongst the most prevalent respiratory viruses and, together, 

account for 50% of viral infections requiring hospitalization [143]. Both viruses share clinical 

manifestations and epidemiological characteristics and co-circulate [144]. They can cause acute 

respiratory tract infections, such as bronchiolitis and pneumonia, and can be life-threatening 

among high-risk populations, including children and the elderly [145]. There are currently no 

effective antiviral treatments or vaccines against these two viruses. Although ribavirin is often 

prescribed against RSV, it is not very effective [145]. 

RSV is the most common cause of pediatric hospitalizations due to respiratory illness, and the 

second biggest cause of mortality worldwide after Influenza disease [145]. There are an 

estimated 33 million cases of RSV annual respiratory infection, 3 million which require 

hospitalization and 60,000 RSV-related deaths globally [143].  Seasonal outbreaks of RSV occur 

in the winter [146]. RSV is a single-stranded RNA virus. The viral genome includes 10 genes that 

encode 11 proteins. Common RSV symptoms include wheezing and difficulty breathing in part 

due to the inflammatory response, increased mucous production, and infection of cells [2].  Risk 

factors include age and chronic lung/heart diseases [146]. 
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HMPV was discovered in 2001 and was immediately recognized as one of the viral respiratory 

pathogens [143].  Epidemiological studies have shown that most children will have already been 

infected with HMPV by age 5 [6]. HMPV accounts for 15% of pediatric hospitalizations [143].  

Adults present mild flu-like clinical symptoms, but it can be more severe in patients with 

comorbidities. HMPV is closely related to RSV, although RSV tends to cause more severe diseases 

[146]. HMPV is a negative-sense single-stranded RNA virus. Its genome has 8 genes that encode 

9 proteins. Its genomic structure and surface glycoproteins are similar to RSV [143]. The 

incubation period is between 4 and 6 days, and the course of the infection can last between 5 

days and 3 weeks [148].  

Both RSV and HMPV can be transmitted via airborne respiratory droplets. Both RSV and HMPV 

belong to the family of pneumoviruses and both primarily targets ciliated alveolar epithelial cells. 

Nucleic-acid molecular testing in pediatric patients with lower respiratory tract infections has 

shown more than one coinfecting virus [149]. Several respiratory viruses are known to participate 

in simultaneous infections including PIV, RSV, RV, IAV, HMPV, and CoV [150]. Epidemiological 

studies have shown frequent cases of RSV-HMPV coinfections [145]. These studies have 

suggested an association between coinfections and increased disease severity. RSV-HMPV 

coinfections have been associated with an increased risk of ICU admission in children [151]. These 

results are however inconclusive, and more studies are necessary to establish causal relations. 

There is still a lack of understanding of how co-infecting respiratory viruses interact among each 

other and with the host immune response. 

The interactions between coinfecting pathogens and the host might be nonlinear and involve 

multiple spatiotemporal scales, complicating the task of understanding their interaction 
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mechanisms [21]. Respiratory virus-virus interactions can be either synergistic or inhibitory. They 

often target the same type of epithelial cells and activate the same inflammatory and immune 

response pathways [21]. PIV can increase IAV pathogenicity by facilitating cell-to-cell spread due 

to cellular fusion [152]. IAV can inhibit RSV and both RSV and RV can reduce IAV disease severity 

[153]. Because viral coinfections of the respiratory tract are prevalent, studying viral-viral 

interactions is necessary to understand their pathogenicity and clinical significance. 

Mathematical models have been essential to studying interactions between host and pathogens 

and between co-infecting pathogens. These models aid in determining the mechanisms driving 

the infection and identifying regulatory feedback [21]. Single infection models have been used to 

quantify viral load kinetics and the dynamics of the immune response and to test different 

therapeutic interventions. Along with the model structure, multi-dimensional parameter 

variations and perturbation analysis can reveal mechanisms that cannot be inferred directly from 

the data or are hard to test experimentally [21]. Simple mathematical models describing 

epithelial cell transitions and free virions have successfully recapitulated viral load kinetics of 

Influenza infection. Such models can be extended to include explicit representations of the 

immune system or to study pathogen-pathogen interactions.  

The enhancing effect of simultaneous infection with influenza virus and the gram-positive 

Streptococcus pneumonia bacteria has been one of the most studied respiratory pathogen-

pathogen interactions. Serious influenza infection facilitates invasion of opportunistic bacterial 

pathogens as the tissue in the lower respiratory tract is damaged and the immune response 

weakens. The maximum synergistic effect is attained if the bacteria invade at the resolution 

phase of the viral infection (7-days post influenza exposure) [154].  Viral load rebounds and 
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bacterial titers peak 24 hours after exposure [21]. Mathematical models have been instrumental 

in identifying the mechanisms of interactions between both pathogens. For example, the 

standard viral kinetic model was paired with a model of pneumococcal replication and the 

macrophage immune response [155]. The model suggested that bacteria increase the rate of 

production of the virus and this hypothesis was later tested experimentally [21].  

Viral-viral interactions have been subjected to less experimental and quantitative scrutiny. The 

most notable exception is co-infections involving the human immunodeficiency virus (HIV). HIV 

interactions with other pathogens can be characterized by general immunosuppression which in 

turn results in increase pathology of other infectious diseases [156]. In this project, we focus 

more narrowly on the interactions between respiratory viruses. Viral-viral interactions can be 

quantified as measurable differences in the course of infection (e.g. viral load, tissue damage) of 

a virus due to the concurrent infection of another virus [156]. Viruses can interact directly via 

their gene products or indirectly by changing the host's environment or the immune response 

[156]. Coinfection exclusion, where infection with a virus prevents cells from getting infected by 

a secondary virus, is an example of direct virus interactions. Superinfection is known to occur 

between bacteriophages and retroviruses [156]. Viruses can interact indirectly by breaking down 

physiological barriers, altering receptor expression modifying the interferon response. They can 

also interact through adaptive immune mechanisms, like the activation of cytotoxic T cells and 

antibody-mediated interactions [156]. 

Mathematical modeling of respiratory virus coinfection has been more limited even though co-

infection can be easily modeled by adding no more than 3 additions equations to the standard 

viral kinetic model [21]. Recently, a model was developed to study the interactions between 
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different respiratory viruses [150]. The model was calibrated used with single infection data of 

influenza, respiratory syncytial virus, rhinovirus, parainfluenza virus, and human 

metapneumovirus and was used to test whether competition for target cells was a plausible 

mechanism of interaction between viruses. The model was able to replicate in vitro data from 

coinfection data of IAV-RSV and IAV-PIV [145]. 

Given how prevalent HMPV and RSV single and dual infections are, there is a need for more 

experimental and qualitative studies that elucidate the mechanism of interactions between both 

viruses. Here we develop a multicellular mathematical model of RSV-HMPV co-infection in vitro. 

The model is based on a previous experimental study of RSV-HMPV co-infection in a three-

dimensional cell culture ex vivo model. The study showed that HMPV is less pathogenic than RSV 

and elicits a smaller IFN response. HMPV replication is further inhibited in the presence of RSV, 

but not the other way around. By neutralizing IFN the inhibition of HMPV was partially prevented. 

From this data, the authors concluded that the interactions between RSV-HMPV was partially 

mediated by the IFN response. We used the model to test whether competition of resources was 

sufficient to explain the observed data and suggest how other possible interactions could be 

tested both quantitatively and experimentally.  

Methods 

Model Development Workflow 

We implemented a model development workflow to study viral-viral coinfection using a 

multicellular spatial model (Figure 5.1). We first started with a differential equation model of a 

single viral infection. The model was calibrated and fit to experimental data to estimate the 

values of the parameters. Once the parameters of the ODE model were identified, the model was 
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translated into a spatial model following a previously published method [157]. The spatial models 

were combined to simulate dual infection experiments. Results from the spatial model were 

compared to additional experimental data for model validation. This project served the dual 

purpose of showcasing this proposed workflow and investigating potential interactions between 

HMPV and RSV.  

 

Figure 5.1. Methodological Workflow. Workflow to translate experimentally guided ODE models to spatial 

models. An ODE model is formulated to quantitatively represent mechanistic hypotheses about the target 

biological system and the experimental data. Model parameters can be estimated and identified using 

standard optimization techniques. Calibrated ODE models can then be translated to ABMs, minimizing 

uncertainties about ABM model parameters. ABM models can be used to represent additional hypothesis 

about the target system. Model outputs can be validated against additional experimental data.   

Experimental Data 

We used single viral load data collected in an ex vivo model and published in a previous study 

[145]. Recombinant HMPV group A C-85473 and RSV-Mcherry strains were used, and ex vivo 
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infections were performed in reconstituted 3D airways MucilAir™. Single and dual infections 

were performed at a MOI of 0.02. Apical washes were collected daily. Viral RNA was quantified 

from those apical washes by real-time RT-PCR using primers specific to RSV-A and HMPV. RSV 

peaked between 2-3 d post-infection (pi) at around 108 viral RNA copies.  HMPV peaked between 

3-5 d pi. Transepithelial electrical resistance, an indicator of tissue integrity, was measured for 

each infected tissue. None of the viral infections compromised tissue integrity. Cilia beating, an 

indicator of cytopathogenicity, was measured using confocal microscopy.  

 

Figure 5.2. Experimental Data for Model Parametrization. A) Viral load data of RSV and HMPV single 

infection ex vivo. Viral loads were collected over 5 days in a multi-cycle experiment. Viral loads were 

measured in RNA viral copies. B) Cytopathogenicity of each virus was measured using confocal microscopy 

and determined by cilia beating. C) Tissue resistance was measured to quantify cytopathogenicity Adapted 

from [145]. 

Single Infection ODE Model 
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To quantify the dynamics of single infections, we used the standard viral kinetics model (SVM). 

The model is composed of five ordinary differential equations. Four of the state variables 

describe cells in different stages of viral infection: uninfected (S), latent phase (E), virus-producing 

(I), and dead (D). The fifth state variable describes free infectious virions. The model contains 5 

parameters: viral infectivity (b), eclipse phase duration (1/k), mean lifetime of a virus producing 

cell (1/d), virus production rate (p), and non-specific viral clearance rate (c). Initial conditions such 

as the initial number of susceptible cells (T0), the inoculum (V0), and the initial number of 

infected cells (E0) need to be specified as well. The model has been used to study influenza 

dynamics in humans [21]. Because of the simplicity of the model, multiple biological processes 

are convoluted into single model parameters. For example, the infected cell death rate (d) 

encompasses apoptosis of cells, viral cytopathogenicity, and immune cell cytotoxicity. The viral 

clearance rate (c) encompasses phagocytosis and antibody-mediated neutralization among other 

processes involved in the loss of viral infectivity [1]. 

FS
F2
= −𝑏𝑉𝐵   (5.1) 

F^
F2
= 𝑏𝑉𝐵 − 𝑘𝐸	(5.2) 

FH
F2
= 𝑘𝐸 − 𝑑𝐼	(5.3) 

F_
F2
= 𝑑𝐼 (5.4) 

FJ
F2
= 𝑝𝐼 − 𝑐𝑉  (5.5) 
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Figure 5.3. Schematic Representation of Standard Viral Kinetics Model. Cells can be in four stages of viral 

infection: uninfected (S), latently infected (E), virus producing infected (I) and dead (D). The virus (V) 

released by the virus producing cells (I) infects susceptible cells (S). The model has five rate parameters: 

viral infectivity (b), eclipse phase (1/k), infected cell death rate (d), virus production rate (p) and viral 

clearance (c).  

Parameter Fitting and Identification 

We used the lmfit python package to estimate model parameters. We used Dual Annealing for 

global search and Nelder-Mead for local search. We used the chi-squared distance to perform 

optimization and minimize the distance between experimental data and model prediction:  

𝜒( = ∑ ∑ (𝐷),* −𝑀),*)(;
/

-
2  (5.6) 

We measured the distance from the model prediction	𝑀𝑖, 𝑗 to the model prediction 𝑀𝑖, 𝑗 for 

every technical replicate 𝑟 ∈ 𝑅 at every time 𝑡 ∈ 𝑇. Because the individual data points in the 

study were not published, we generated 5 synthetic data sets by assuming that the error was 

normally distributed and sampling the technical replicates from the reported distributions (Figure 

5.2A). We used the random.normal from the numpy package.  
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Figure 5.4. Generating Technical Replicates. Five synthetic technical replicates data sets were generated 

from the reported viral load data. Replicates were generated by sampling from a normal distribution with 

mean and standard deviation determined by the data reported at each time point.  

We nondimensionalized the cell population by setting the initial number of susceptible cells (S) 

to 1. We adopted two different strategies to fit model parameters: 1) Using the full viral load data 

and including the least number we estimated the inoculum (V0) and the remaining parameters 

(b, k, p, c and d). Since HMPV was reported to have no cytopathic effect, we set the infected cell 

death rate to zero. 2) Using viral load data from the first day onwards, we fixed the inoculum to 

zero (V0 = 0) and the ratio of the initial number of infected cells based on the reported MOI (E0 

= 0.0196). Because the experiment was a multicycle in vitro experiment, we assumed that the 

viral clearance rate was negligible (c = 0). Using TEER and cilia beating data (Figure 5.2B,C), we 

fixed the cell death rate to be d= 0 in the case of HMPV and d = 0.4 in the case of RSV, such that 

75% of the cells were dead by the end of the simulation. 

1st Strategy 2nd Strategy 
HMPV RSV HMPV RSV 
V0 Fitted V0 Fitted V0 0 V0 0 
E0 0 E0 0 E0 0.0196 E0 0.0196 
b Fitted b Fitted b Fitted b Fitted 
k Fitted k Fitted k Fitted k Fitted 
d Fitted d Fitted d 0 d 0.4 
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p Fitted p Fitted p Fitted p Fitted 
c Fitted c Fitted c 0 c 0 

Table 5.1. Fitting strategies 

Single Infection ODE to ABM model translation 

To translate the single infection ODE model into a multicellular spatial agent-based model (ABM), 

we followed a previously published method [157]. Rate equations in the ODE model were 

translated into an individual cell transition probability. Some of the parameters of the model also 

need rescaling based on the size of the cell population in both the ODE and the ABM models. The 

transition probabilities were assumed to follow a Poisson distribution. For an individual cell 

located in position x the transition probabilities were as follow: 

Pr(𝑆(𝑥) → 𝐸(𝑥)) = 1 − 𝑒X
F-())
>G   (5.7) 

Pr(𝐸(𝑥) → 𝐼(𝑥)) = 1 − 𝑒XM  (5.8) 

Pr(𝐼(𝑥) → 𝐷(𝑥)) = 1 − 𝑒XF   (5.9) 

The parameters of the transition probabilities were adopted from the ODE model. 𝑆A corresponds 

to the initial number of susceptible cells in the ABM model. The ABM translation also required 

spatializing the free virions V→V(x). The reaction-diffusion equation specified the change in the 

amount (or concentration) of free virions as a function of time and location. 

UJ(#)
U2

= 𝐷 UAJ
U#

+ 1
T(#)

− 𝑐𝑉(𝑥) (5.10) 

The production of free virions at a particular location x was determined by the production rate in 

the ODE model divided by the surface area of the cell that occupies that position. This was 

equivalent to assuming that the production of free virions was uniform over the cell surface. We 

assumed a one-to-one correspondence between viral RNA and free infectious virions. The viral 

clearance rate was adopted from the ODE model. Spatialization required introducing an 



 158 

additional parameter: the diffusion coefficient of free virions, D. This parameter can often be 

estimated from the literature or calculated from the molecular weight of the virus using the 

Einstein-Stokes equation. The ABM was implemented in CompuCell3D [37].  

Coinfection ABM model 

To model viral-viral coinfection, we combined the two independently calibrated single infection 

models under the assumption that the only interaction between viruses is competition for target 

cells. We excluded the possibility of two viruses infecting the same cell (superinfection). The 

probability of target cells becoming infected depended on the free virions of RSV or HMPV in 

their vicinity. The transition probabilities were the same as in Equations (5.6)-(5.8). Both viruses 

diffused in the extracellular environment according to Equation (5.9). We assumed no interaction 

between viruses in the extracellular environment. We further assumed that both viruses had the 

same diffusion coefficients.     
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Figure 5.5. Coinfection Model. 

Results  

Single Infection ODE Model Fitting and Parameter Identification 

We fit SVM (Equations 5.1-5.5) to RSV viral load data using fitting strategy 2 (Table 5.1). 

Parameter estimates are reported in Table 5.2. The fitted model recapitulated the experimental 

data (Figure 5). The viral load increased rapidly at 1 d pi from 10^5 to 10^7 viral RNA copies. Viral 

load peaked at 3 d pi at 10^8 dpi. Because viral clearance was fixed to reflect the multi-cycle 

experimental setting, the viral load saturated and was unable to capture the slow decay observed 

between 4-5 d pi. No quantitative data of the dynamics of infection in the cell culture was 

collected. Under the target cell limited assumption, the model suggests that all susceptible cells 

(S) become infected by 1.5 d pi. The number of latently infected cells I peaks at 1 d pi, and the 

number of virus-producing cells peaks (I) peaks at 1.5 d pi. The death rate was fixed to achieve 

around 80% of cell death (D) at the end of the simulation. 

 

Figure 5.6. Best Fits RSV Viral Load Data. SVM model parameter were estimated by fitting the RSV single 

infection viral load data. Strategy 1 best fit is shown and resulting infected cell dynamics as predicted by 

the model.   



 160 

We also fit SVM (Equations 1-5) to HMPV viral load data using fitting strategy 2 (Table 5.2). 

Parameter estimates are reported in Table 5.2. The fitted model recapitulates the experimental 

data (Figure 5), except the first data point which was left out of the parameter fit as described 

above. The viral load increases slowly at from 0 to 3 dpi from 10` to 10V viral RNA copies. Viral 

load peaks at 5 dpi at 10a dpi. Under the target cell limited assumption, the model suggests that 

all susceptible cells (S) become infected by 3 dpi. The number of latently infected cells I peaks at 

3 dpi, and the number of virus-producing cells peaks (I) peaks at 5 dpi. The death rate was fixed 

to 0 based on cilia beating data which suggest HMPV was not cytopathogenic. 

 

Figure 5.7. Best Fits HMPV Viral Load Data. SVM model parameter were estimated by fitting the HMPV 

to single infection viral load data. Strategy 1 best fit is shown and resulting infected cell dynamics as 

predicted by the model. 

Parameter RSV HMPV 
V0 (Fixed) 0.0 0.0 
E0 (Fixed) 0.0196 0.0196 
b 1.8772e-07 1.6028e-06 
k 7.03285952 0.04166667 
p 1.9827e+08 1.5549e+08 
d (fixed) 0.4 0.0 
C (fixed) 0.0 0.0 

Table 5.2. Parameter Estimates Best Fits  
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Single Infection ABM Model Translation 

After fitting the model to data and identifying the model parameters, we spatialized the ODE 

model following a previously developed method that translates ODEs to multicellular ABMs 

[157]. The spatialized model recapitulated the dynamics of the ODE model. Delays in the ODE 

model were associated with stochastic individual cell transitions and with the local diffusion of 

free virions in the extracellular environment. Note that, despite the delays, ABMs reach the same 

steady states as the ODE model. In the RSV spatial model, cell dynamics were delayed by about 

1 d (Figure 5.8). All cells became infected within 2.5 d pi (~1.5 d pi in the ODE model), latently 

infected cells peaked at 2 d pi (~1 d pi in the ODE model), and virus-producing cells peak at 3 d pi 

(~2 d pi in the ODE model). The viral load increased slightly slower, from 10^5 to 10^7 viral RNA 

copies at 2 d pi and peaked at 10^8 viral RNA copies at 5 d pi. The spatial simulation was initiated 

at the same MOI as the ODE model and 1% of the cells were infected at the beginning of the 

simulation. When cells started to produce virus, cells in the vicinity of the originally infected cells 

became infected as well, creating small lesions called viral plaques. By 2 d pi, plaques started to 

fuse, and the rate of new infections began to decrease. 
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Figure 5.8. RSV single infection spatial ABM simulation. Comparison of RSV viral load and infected cells 

predicted dynamics in the ODE (dashed) and the ABM (solid). ABM dynamics are slightly delayed. Spatially 

resolved simulations show characteristic viral plaque formation.  

In the HMPV spatial model, cell dynamics were significantly delayed by more than 3 d (Figure 

5.8). Unlike in the ODE model where all cells are infected by 3 d pi, 40% of the cells remain 

uninfected by 6 d pi in the spatial model. Whereas in the ODE model latently infected cells peak 

at 3 d pi, cells were still entering the latently infected stage by 6 d pi in the spatial model, and the 

curve was increasing at the end of the simulation. In the ODE model, around 20% of the cells 

were in the virus-producing stage by the end of the simulation whereas less than 10% were virus-

producing in the spatial model. The model suggested that viral load dynamics were also 
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significantly delayed, an increase from 10^4 to 10^6 viral RNA copies over 5 days (3 days in the 

ODE model). The spatial model revealed small regions of viral plaques containing a small number 

of virus-producing cells at their center. Unlike in the RSV model, the model derived HMPV plaques 

did not fuse and remained isolated. The significant slowdown in the dynamics could be, in part, 

explained by the estimated long eclipse phase (around 60 hours).  

 

Figure 5.9. HMPV single infection spatial ABM simulation.  Comparison of HMPV viral load and infected 

cells predicted dynamics in the ODE (dashed) and the ABM (solid). ABM dynamics are slightly delayed. 

Spatially resolved simulations show characteristic viral plaque formation. 

Coinfection ABM Model 
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We combined the two single-infection spatial models to simulate co-infection of the same tissue 

by RSV and HMPV. We initialized the simulation with combined initial conditions from both ODE 

models: around 2% of the cells were infected at the beginning of the simulation (1% by HMPV 

and 1% by RSV). The rest of the parameters were adopted from the single infection model. 

Because the dynamics of RSV are faster than HMPV, RSV was able to outcompete HMPV. The 

dynamics of RSV remain unaffected by the presence of HMPV: latently infected cells peak at 2 

dpi and virus-producing cells peak at 3 dpi. The dynamics of HMPV are significantly inhibited by 

the presence of RSV: latently infected cells peak at 3 dpi at around 10% compared to 20% of cells 

latently infected at that time in the single infection model and 60% latently infected at the end 

of the simulation. Viral load is also significantly decreased: from 10a viral RNA copies at 6 dpi to 

10V in the dual infection. The spatial model shows how RSV viral plaques grow by day 1 and fuse 

by 2. HMPV viral plaques show at day 2 but are only able to infect the isolated areas of the 

simulation that have not been already infected by RSV. By the end of the simulation, the whole 

simulation domain is infected by either RSV or HMPV. 
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Figure 5.10. RSV-HMPV Dial Infection Spatial ABM Simulation. Coinfection was modeled and simulated 

by combining the two single infection ABM models. Spatial parameters (diffusion coefficient) were 

assumed to be the same for the two viruses. Other model parameters and initial conditions are adopted 

from the ODE estimated model parameters. ABM produces viral load, infected cell and spatial resolved 

coinfection dynamics that can be compared to further experimental data.  

ABM Model Validation 
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By excluding the possibility of viruses infecting the same cell, competition for target cells was 

built into the model as the main mechanism of interaction between RSV and HMPV. To 

quantitatively validate this hypothesis, we compared simulation outcomes to additional data on 

the viral load fold change during co-infection. Viral loads were compared under different 

conditions: 1) when both viruses infected the tissue at the same time (RSV and HMPV), 2) when 

RSV infected the tissue 2 days after HMPV (HMPV then RSV) and 3) when HMPV infected the 

tissue 2 days after RSV (RSV then HMVP) (Figure 5.12). Co-infection viral loads were compared at 

5 dpi with single infection viral loads. The experimental data shows that RSV viral load is 

unaffected by the presence of HMPV regardless of whether RSV infects at the same time or 2 dpi 

with HMPV (Figure 12A). The viral load of HMPV decreases 2 orders of magnitude when HMPV 

and RSV infect at the same time. Interestingly, the viral load decreases 1 order of magnitude 

when HMPV infects 2 dpi with RSV (Figure 12B).  
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Figure 5.11. Coinfection ABM Model Validation. Viral load fold changes in single and coinfection 

experiments ex vivo. RSV is mostly unaffected by the presence of HMPV. HMPV is significantly inhibited 

by coinfection with RSV. The inhibition is stronger when both viruses coinfect tissue at the same time,  

than when HMPV infects the tissue two days after RSV. Adapted from [4]. 

We simulated all these different experimental conditions in the spatial model for 4 technical 

replicates (to match the number of replicates in the experimental data). In the case of RSV, the 

spatial model recapitulated the change in the viral load data (Figure 5.11). When RSV and HMPV 

infect the tissue at the same time, the viral load remains unchanged with respect to the single 

infection. When RSV infects 2 dpi with HMPV, the viral load changes decreased by about 1 order 

of magnitude, which is slightly higher than the observed experimental data. Variability between 

replicates is also smaller than the experimentally observed variability. This discrepancy suggests 

that HMPV is slightly more effective at infecting the tissue in the spatial model than in the 

experimental system or that a missing mechanism is involved in inhibiting HMPV in the presence 

of RSV.   

In the case of HMPV, the model produced a slightly smaller fold change of HMPV when both 

viruses infect at the same time: 2 orders of magnitude in the experimental data versus 1 order of 

magnitude in the simulation. The variability is also smaller in the simulation than in the 

experimental data. Again, this discrepancy can be explained by two possibilities: either HMPV is 

slightly more infectious in the model than the experimental systems or a missing mechanism 

inhibits HMPV in the presence of RSV. The case where RSV infects 2 dpi with HMPV is the more 

interesting case because the fold change is smaller (1 order of magnitude) than when both viruses 

infect at the same time (2 orders of magnitude). The spatial model predicts an even bigger change 
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in viral load (around 3 orders of magnitude) when HMPV infects the tissue 2 dpi with RSV. This 

discrepancy cannot be explained solely by a mismatch between the parameters of the model and 

the rates in the biological system.    

Discussion 

In this project, we implemented a proposed workflow to develop spatial agent-based models 

(ABMs) from the calibrated ODE model. We used the standard viral load model (SVM) to describe 

and quantify the viral load dynamics of RSV and HMPV single infections in an ex vivo model. We 

fixed some of the model parameters based on assumptions about the experimental design and 

the cytopathogenicity data (Table 5.1). We then estimated the remaining parameters for both 

viruses (Figure 5.6-5.7 and Table 5.2). We then translated the ODE models into spatial and 

multicellular ABMs. The translation was achieved by turning the rates in the ODE into transition 

probabilities for individual cells. The translation implies abandoning the “well-mixed” assumption 

built into the ODEs. Cell transitions become stochastic processes and exposure to free virions is 

dependent on local diffusion. The net effect of this translation was a slowdown in the dynamics 

of the ABM with respect to the ODEs. We showed that the dynamics of RSV were delayed by 1 

day, whereas the dynamics of HMPV are delayed by about 3 days. The magnitude of the delay 

was dependent both on the size of the simulation domain (e.g., how many cells are being 

simulated) and the diffusion coefficient of the virus. A future direction for this project would be 

to quantify how the delay affects the overall simulation outcomes and the conclusion that can be 

drawn. The spatial simulations reproduced the observed patterns of viral plaques in vitro.  

We combined the single infection ABM models to simulate RSV-HMPV coinfection in the same 

tissue. The coinfection model assumed that the only interaction between viruses was the 



 169 

competition of target cells. To quantify the magnitude of this inhibition, we compared simulation 

outputs to experimental fold change data during co-infection. We showed that the model was 

able to recapitulate RSV fold data and HMPV fold change data (when both viruses infect at the 

same time). Small discrepancies could be explained by a slightly higher infectivity of HMPV in the 

model or by a missing mechanism by which RSV inhibits HMPV. However, the model is currently 

unable to recapitulate experimental data when RSV infects earlier than HMPV. This discrepancy 

cannot be explained by inaccuracy in model parameters and, thus, suggests that the competition 

alone may be insufficient to explain the experimental data. 

IFN mediated interaction is one type of viral-viral interaction where infection by one virus could 

inhibit the replication of a second virus by activating the interferon pathway. The experimental 

study that this project was based on showed that RSV elicited a stronger IFN response than HMPV 

and that HMPV was more sensitive to IFN than RSV. The antiviral response of IFN has been 

previously modeled by adding additional terms to the SVM [19]. For example, the model could 

be extended to include a state variable explicitly describing IFN titers. The state variable could 

have inhibitory effects on other variables of the model, typically the viral production rate (p) or 

the duration of the eclipse phase (1/k). This extension has not necessarily resulted in better fits 

of the SVM model to the data, mostly because viruses have ways of shutting down the IFN 

response or because the response can be implicitly correlated with the other parameters of the 

model [19].  

In the context of co-infection, we could potentially explore interactions between viruses without 

the need of adding state variables to the SVM model. As a future direction of this project, we 

propose exploring the interaction between viruses by modeling direct inhibition of one virus 
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(virus 1) of any of the viral cycle steps of the second virus (virus 2) (Figure 5.12). For example, 

virus 1 could decrease the infectivity, extend the eclipse phase, or reduce the production of virus 

2. The model structure and its functional form could suggest the types of interaction driving the 

dynamics of the biological system. Virtual experiments could be performed to suggest what 

experiments maximally differentiate between different interactions. Finally, such models could 

potentially clarify the clinical and epidemiological significance of viral co-infections. 

    

Figure 5.12 Mathematical Models of Possible Viral-Viral Interactions. Viral interactions can be modeled 

as each viruses modulating the parameters of the other virus. Mechanistic hypotheses about these 

interactions will determine which parameters are modulated and the functional form of the inhibition.  
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Appendix A 

Modularity and Extensibility of Viral Infection Framework 

Agent-based models are particularly well suited for modeling complex biological systems that 

span over multiple spatiotemporal scales. The architecture of ABMs can be organized in modules 

that resemble the functional units interacting in biological processes [7]. We have developed a 

modular framework to facilitate modeling of viral infection in epithelial tissue [159]. The 

framework supports independent development of functional modules to represent the different 

processes that determine viral infection dynamics. The original framework included epithelial cell 

modules, immune cell modules and molecular transport modules. The epithelial modules 

modeled processes such as viral internalization and replication, virally induced cell and cytokine 

production and release. Immune cell modules modeled activation, chemotaxis, and clearance of 

infected cells. Transport modules modeled diffusion of infectious virions and cytokines in the 

extracellular environment.  

One of the key elements left out in the original publication was the Type I interferon response. 

Type I Interferon are a type of signaling molecules that virally infected cells produce to activate 

their internal response and to alert neighboring cells. The activation of the IFN pathway and the 

interferon stimulated genes lead to a persistent antiviral state in epithelial cells by blocking viral 

entry, downregulating viral replication, and blocking export of viral progeny [23]. By not 

incorporating explicitly the IFN response, we implicitly assumed that the IFN response is 

negligible or constant through the course of the infection [19]. The effect of interferon was 

implicitly represented in other parameters such as the length of the eclipse phase, the rate viral 

replication or the rate of viral export.  
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We have recently proposed a methodology to translate calibrated and validated cellular ODE 

systems into ABMs. The method translates the rates described by the ODEs into transition 

probabilities for individual cells. The method requires leaving behind the assumption built into 

ODEs that the biological compartments described by the equations are well-mixed and that 

dynamics can be averaged over the whole population [157]. Local diffusion of molecules and 

signals requires introducing additional transport parameters such as the diffusion coefficient and 

the decay rate of molecules. Other processes, such as rates of recruitment might require 

introducing additional models (such as seeding or queuing) and additional parameters [158].  

Following this methodology, we translated an ODE model of IFN response to viral infection into 

ABM in CompuCell3D. The modeled had been previously calibrated in validated against data from 

Influenza infection [23]. The model described key intermediates of the IFN signaling pathway, 

intracellular recognition, paracrine signaling and regulation of viral replication by IFN. The 

multiscale and multicellular version of the model qualitatively replicated plaque growth patterns 

in vitro. Sensitivity analysis over the parameters of the model showed regimes that led to viral 

containment and uncontrolled growth. The model also suggests that the parameters of IFN 

signaling are identifiable in experimental conditions that lead to viral arrest.  

In this project, we combined elements of the original viral infection model with the IFN model 

using the tools of the viral infection framework. The purpose was to add immune cell response 

to the IFN model and show how the modules published along the framework could be 

complemented by independently developed modules. First, we turned the components of the 

IFN model into modules of the framework. The modules are publicly available as add-on libraries 

that could be employed by users of the framework looking to explore the effects of IFN response 
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with or without other components of the immune response (Figure A.1). Secondly, we added 

modules one at the time to construct a model of viral infection that included elements from both 

previously published models. Thirdly, we investigated how each of the parameters of each of the 

modules affected the overall dynamics of the systems by performing parameter sweeps and 

identifying qualitatively different simulation outcomes.  

 



 174 

Figure A.1. Combination of Libraries Used to Combine IFN model with Cellular Immune Response. 

Adapted from [159].  

Coupling IFN model with Lymph Node model and Immune Cell Recruitment 

The first extension was to couple the IFN model with a model of immune cell recruitment (Figure 

A.2). The original framework includes a module that models the effect of inflammatory signals at 

the infection site have on nearby lymph nodes. In the original model, a generic cytokine served 

as a recruiting signal. An ODE described the state of the lymph node model. At a steady state, the 

immune recruitment model maintains a resident population of generic immune cells. In a pro-

inflammatory state, the rate of change of the lymph node model is positive and immune cells are 

added to the simulation domain. In an anti-inflammatory state, the rate of change of the lymph 

node model is negative, and immune cells are removed from the simulation domain. From the 

original publication, we adopted the immune seeding model that seeded immune cells by 

sampling the simulation space and seeding immune cells in regions of higher concentration of 

recruiting signal. 
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Figure A.2. Schematic Representation of Combination of IFN Model with Lymph Node and Immune Cell 

Recruitment Models.  

We coupled both models by substituting the generic cytokine with extracellular IFN 

FS
F2
= 𝛽8FF − 𝛽@0E𝑁)7706> +

bHCI
cJ3&%,

𝑰𝑭𝑵𝒆 − 𝛽F>?8"𝑆  (A.1) 

Parameters 𝛽8FF 	 and 𝛽@0E determine the size of the resident immune cell population and were 

not altered in the coupling. Adjusting these parameters would correspond to modeling different 

types of tissues. The parameter 𝛼@)B is the transmission coefficient and determines how sensitive 

is the immune recruitment model to the IFN signal. Because the amplitude of IFN and the generic 

cytokine signals were not necessarily comparable, 𝛼@)B needed to be rescaled. The parameter 

𝛽F>?8" describes the time scale of the anti-inflammatory response. This parameter described the 

persistence of the inflammatory signal. We performed single and two-dimensional parameter 

sweeps of 𝛼@)B and 𝛽F>?8" to explore how they affected the dynamics of the overall model.  
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Figure A.3. Transmission  Coefficient 𝜶𝒔𝒊𝒈 Parameter Sweep.  

We first performed a logarithmic parameter sweep of the transmission coefficient 𝛼@)B  with 

multipliers 10A, 10\ and 10V of the baseline values in the original model. The parameter sweep 

shows that increasing 𝛼@)B moves the overall system from a regime where all cells get infected 

(Figure A.3A) and the plaque growth continuously (Figure A.3A) to regions where not all cells are 

infected at the end of the simulation and the plaque growth is arrested. The maximum number 

of immune cells recruited to the simulation domain increases as the value of the parameter 

increases, from 300 at the baseline value to 700 at 10V (Figure A.3C). The effect of the parameter 

variation on the state of the immune recruitment model is clear (Figure A.3D). At the baseline 

value, the immune recruitment signal is small and remains constant and through the course of 

the infection. At an intermediate multiplier, the immune recruitment model is more responsive 
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to the IFN signal, as it increases when extracellular interferon starts to peak (Figure A.3E) but is 

insufficient to control the infection. When most cells have died, the immune model adopts an 

anti-inflammatory state, and the recruitment signal starts decreasing. When the multiplier is 

high, the immune recruitment model is highly sensitive to extracellular IFN and starts increasing 

early during the infection. Note that because extracellular IFNe persists high in cases of plaque 

containment, the immune recruitment signal continues to increase after the infection has already 

been contained.  

 

Figure A.4. Transmission coefficient 𝜶𝒔𝒊𝒈 and decay coefficient 𝜷𝒅𝒆𝒄𝒂𝒚 Parameter Sweep 

Next, we performed a two-dimensional parameter sweep of the transmission coefficient 𝛼@)B and 

decay coefficient 𝛽F>?8". As in the previous sweep, 𝛼@)B was varied over multipliers 10A, 10\ and 

10V on the baseline value. 𝛽F>?8" was varied over multipliers 10A, 10X\ and 10XV. At the baseline 

values, the immune response is insufficient counter the progression of the infection and all cells 

get infected (Figure A.4A) and the plaque grows continuously (Figure A.4B). Decreasing the 

𝛽F>?8"  and increasing 𝛼@)B lead the systems from regions of uncontrolled viral growth to 
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containment and to a doubling the number of recruited immune cells. Whereas increasing 𝛼@)B 

leads to higher peaks values of the immune recruitment model, decreasing 𝛽F>?8" leads to both 

more rapid activation and slower decline of the immune recruitment signal (Figure A.4D) even at 

similar levels of extracellular IFN (Figure A.4E). Combined 𝛼@)B and 𝛽F>?8" lead to earlier plaque 

containment, and bigger number of recruited of immune cells.  

Coupling IFN model with Immune Cell Cytotoxicity  

The second extension was adding cytotoxic immune cells activity module to the IFN model along 

with the immune cell recruitment model (Figure A.5). When immune cells were recruited to the 

simulation domain, they kill the immune cells they come into contact with. Because cells kill cells 

immediately upon contact, the effectiveness of immune cell killing is entirely dependent on their 

ability to sample the simulation space. Sego et al. already explored the effect of the parameters 

of the immune seeding model on the effectiveness of immune cell cytotoxicity [160]. An 

alternative approach is to test both the random movement and the chemotaxis of immune cells.  

 

Figure A.5. Combining IFN Model with Immune Cell Cytotoxicity Model  
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Coupling the modules required instantiating a chemotaxis module that drives immune cell 

movement toward areas of the chemotaxis signal. As in the original mode, in the model extension 

extracellular virus served as the chemotaxis signal. The chemotaxis is modeled by adding an 

energy term to the Hamiltonian of the system. 

ℋ = 𝜆?3>74 9
eC(#,2)
C(#,2)<f

; (A.2) 

Because the levels of extracellular virus are not necessarily commensurable between the IFN and 

the original model, the chemotaxis parameter 𝜆?3>74 was modified such that immune cells were 

responsive to the extracellular virus but were not deformed by the strength of the chemotactic 

force. Varying the chemotaxis parameter was insufficient to produce significant changes in the 

dynamics of the system (data not shown). Thus, we extended the existing model to include a 

model of persistent random walk on top of the intrinsic cell motility and the chemotactic 

movement. Persistent random walk is implemented by introducing a slowly diffusing auxiliary 

chemical field that is consumed by motile cells. Cells will move in a quasi-random walk persisting 

in their movement before randomly changing direction. In this case, 𝜆?3>74 controls how much 

cell movement is due to intrinsic random motility versus persistent random walk.  
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Figure A.6. Lambda Chemotaxis 𝝀𝒄𝒉𝒆𝒎𝒐 Parameter Sweep 

We performed a parameter sweep of the lambda chemotaxis parameter controlling the 

persistent random walk over multipliers 0, 2, 4 and 6. Increasing 𝜆?3>74 increases the ability of 

immune cells to sample the simulation domain and thus increases the effectiveness of cytotoxic 

killing, leading to higher viral containment (Figure A.6B) and to higher number of cells being 

uninfected at the end of the simulation (Figure A.6A). Interestingly, because of the feedback 

mechanism between the number of uninfected cells, the activation of the intracellular IFN 

pathway via paracrine signaling and the release of extracellular IFN (Figure A.6E), higher cytotoxic 

efficacy also leads to higher number of recruited immune cells (Figure A.6C) and higher peaks of 

the immune recruitment signal (Figure A.6D).  
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Figure A.&. Transmission coefficient 𝜶𝒔𝒊𝒈 and Lambda Chemotaxis 𝝀𝒄𝒉𝒆𝒎𝒐 Parameter Sweep 

Lastly, we performed a two-dimensional parameter sweep of the lambda chemotaxis 𝜆?3>74 and 

the transmission coefficient 𝛼@)B parameters. As before, 𝛼@)B  was varied over multipliers  

10A, 10\ and 10V on the baseline value and 𝜆?3>74  over multipliers  0,2, 4 and 6 on the baseline 

value. The combined effect of varying both parameters (increasing 𝛼@)B and 𝜆?3>74) leads to 

strong containment of viral spread. For high values of either parameter, the infection fails to take 

over or only infects a small number of cells (Figure A.7A) and the plaque fails to growth beyond 

the first cycles of infection (Figure A.7B). At intermediate regions the plaque growth is slowed 

down by the immune response but is incapable of controlling the spread of the infection. Note 

that either strategy leads to containment even on the absence of the other. Slow number of 

highly motile cytotoxic immune cells are as effective as high number of less motile cells.  

Interferon Pretreatment 

After putting the new model together and identifying the effect of varying key model parameters, 

we performed a virtual experiment to quantify the effect of interferon pretreatment in the 
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system. We had already performed a pre-treatment experiment in the original publication 

containing the IFN model. However, we did not test the effect of different pretreatment doses 

and didn’t take into consideration cellular immune response. To model pretreatment, we added 

different levels of extracellular IFN at the beginning of the simulation. We tested pretreatment 

in a parameter region where the immune response was strong enough to slow down the spread 

of the infection but insufficient to contain plaque growth.  

 

Figure A.8. Dose-Dependent Interferon Pretreatment 

To determine starting doses, we took as a reference the concentration of extracellular IFN 

produced at the control parameters values. We then pre-stimulated the simulation domain with 

concentrations of 10X`, 10X=A, 10X(A and 10X\A	𝜇𝑀. Higher concentrations of IFN pre-

stimulation led to bigger number of uninfected cells at the end of the simulation (Figure A.8A) 

and smaller viral plaques (Figure A.8B). Higher concentrations also led to more recruited immune 
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cell recruitment (Figure A.8C) and earlier activation of the immune recruitment signal (Figure 

A.8D). Note that regardless of the pre-stimulation concentration, extracellular IFN always 

reached the same steady state levels. If the IFN stimulation was too small, it had no significant 

effect on the dynamics of the system.  

Discussion 

Using the libraries available in our viral infection framework, we have integrated models of viral 

spread, interferon response, immune cell recruitment and cytotoxicity. Each of these processes 

have been incorporated into the framework as independent functional modules. Parameters 

corresponding to each module can be independently identified. In the case of the parameters of 

the IFN signaling pathway, these were previously identified using data from influenza infection. 

Combining parameters between calibrated and estimated parameters might help understand the 

biological significance of the parameters and what are reasonable ranges of their values.  

We showed over what ranges parameters corresponding to the immune recruitment and 

immune cell cytotoxicity modules showed qualitatively distinct simulation outcomes: 

uncontained growth and plaque arrest. Both outcomes have been experimentally observed in 

vitro. The immune recruitment signal shows distinct outcomes when parameters such as the 

transmission coefficient and the decay constant are varied over 3 orders of magnitude. These 

results might suggest the spatiotemporal scales that characterize an effective immune response 

to viral infections. The immune cytotoxicity module shows uncontained growth when immune 

cells do not sample the simulation space effectively and containment when they are highly 

motile. We showed that there is a tradeoff between immune recruitment and increase motility, 

such that both low recruitment of highly motile and high recruitment of immotile cells lead to 
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the same infection outcomes. These results suggests that additional data is required to 

distinguish the contribution of each mechanism to the course of infection. By performing a virtual 

experiment, we also showed how IFN prestimulation dose relates quantitatively to infection 

outcomes. Again, more data is necessary to identify the correspondence between biological and 

simulation ranges of the parameters. 
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https://nanohub.org/resources/r0estimator2. DOI: 10.21981/8Z8N-JD89. 

J. Aponte-Serrano, T.J. Sego (2020), ”COVID 19 Virtual Tissue Model - Tissue 
Infection and Immune Response Dynamics,” 
https://nanohub.org/resources/cc3dcovid19. DOI: 10.21981/Q058-ZK57 

CONFERENCES J. Aponte Serrano Talk: “Integrating Validated Models of Viral Replication and  
Interferon Signaling into a Multi-Scale Spatial Framework to Identify Key 
Factors of Viral Infection Dynamics 
Society of Mathematical Biology Annual Conference  Jun 2021 

J. Aponte Serrano, J. Glazier, Poster: “A Workflow for Replicating 
Computational Research in Biomechanics”, at Southern California 
Systems Biology Conference 

 Irvine, CA.   Feb 2019 
WORKSHOPS Systems Modeling in the Pharmaceutical Industry - Problem Solving  

Workshop 
Fields Institute, Toronto, ON  Aug 2019 

Hands-on Workshop on Computational Biophysics, National Center for 
Multiscale Modeling of Biological Systems  

 Pittsburgh, PA  May 2019 
Short Course in Systems Biology: Foundation for Interdisciplinary Careers, 

Center for Complex Biological Systems  
 University of California, Irvine, CA  May 2018 
CompuCell3D 12th User Training Workshop - Biocomplexity Institute 
  Bloomington, IN  Aug 2017 

AWARDS Luddy Research Award, Luddy School of Informatics, Computing and  
Engineering 



§ In recognition of excellent performance in the domain of research in the 
school  2021 

 HSF Scholar, Hispanic Scholarship Fund 
§ For outstanding academic performance  2016 

 Honor Enrollment, University of Puerto Rico 
§ For attaining a GPA higher than 3.50  2007 – 2011  

PROFESSIONAL  
AFFILIATIONS Society for Industrial and Applied Mathematics 
 Society of Mathematical Biology 
 Philosophy of Science Association 
CAMPUS  
ACTIVITIES Academic Senate, University of Puerto Rico 

§ Student Senator Aug 2013 – May 2014 
 University Accessibility Center, University of Puerto Rico 

§ Academic Support Coordinator Aug 2009 – May 2011 
LANGUAGES Spanish: Native 
 English: Fluent 
SKILLS Python, Matlab, Mathematica, C++, LaTex, CompuCell, Tellurium,  
 COPASI 
INTERESTS Bioengineering, Computational Biology, Modeling and Simulation, Scientific  
 Computing, Martial Arts 


