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• Postdoctoral Fellow
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• Intelligent Systems Engineering
• Lead developer: CompuCell3D
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• Engineering Design Research Lab, Prof. Andres Tovar

• Research
• Theoretical/computational modeling in cellular/tissue dynamics and tissue 

engineering applications
• Bone biomechanics and implant design
• Biofabrication processes and bioreactor design
• Immunology and viral infection
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Premise: Primary Acute Local Infection and 
Innate Response in a Planar Milieu
• Infection in a small quasi-2D patch 

of susceptible tissue

• Assume primary infection 
• no pre-existing adaptive immune 

response
• no specific antibodies, memory T-cells 

or targeted B cells

• Assume acute infection 
• consider a short time where the 

immune system either clears the 
virus, the virus spreads over the 
entire tissue patch, or something in 
between
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Overview of Model Components

• Two cell classes
• Epithelial cell: the susceptible cells
• Immune cell: the infection fighters

• Three diffusive fields
• (Extracellular) Viral Field: 

extracellular virus transport
• Cytokine Field: local and global 

signaling
• Oxidative Agent Field: epithelial cell 

killing by immune cells

• Lymph node
• Compartmental model
• Regulates local immune cell 

population
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Modules of the Viral Lifecycle

• Viral Internalization: how virus gets into a cell
• Virus is taken from the environment and transferred into a cell
• Binding to receptors determines rate of internalization vs. 

extracellular viral concentration

• Viral Replication: how virus replicates inside a cell
• Four basic stages of replication: Unpacking, Genome 

Replication, Protein Synthesis, and Assembly and Packing
• Exponential amplification phase: Genome Replication

• Viral Release: how virus is released into the 
environment

• Virus is taken from the cell and transferred into the 
environment

• Rate of release is proportional to internal amount of 
Assembled and Packaged genomic material

6

𝑑𝑈

𝑑𝑡
= 𝑈𝑝𝑡𝑎𝑘𝑒 − 𝑟𝑢𝑈

𝑑𝑅

𝑑𝑡
= 𝑟𝑢𝑈 + 𝑟𝑚𝑎𝑥𝑅

𝑟ℎ𝑎𝑙𝑓

𝑅 + 𝑟ℎ𝑎𝑙𝑓
− 𝑟𝑡 𝑅

𝑑𝑃

𝑑𝑡
= 𝑟𝑡𝑅 − 𝑟𝑝𝑃

𝑑𝐴

𝑑𝑡
= 𝑟𝑝𝑃 − 𝑅𝑒𝑙𝑒𝑎𝑠𝑒



7

Uninfected

Infected

Virus releasing

Dead

Immune

Epithelial Immune

Virus Cytokine Oxidative Agent



Simulate Therapy with RNA-Synthesis Blocker

Drugs like Remdesivir inhibit RNA synthesis, 
the one exponential step in viral replication

Issues:

• Effectiveness decreases rapidly as the time 
of first treatment increases

• Optimal treatment: lowest effective dose

Easy to model and simulate

• Treatment corresponds to reducing 
replication rate in viral replication model

• Treatment can be applied at various times 
after initial infection in simulation
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Example simulated therapy. 𝑟𝑚𝑎𝑥 is the 

replication rate of all cells in simulation time. 
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Time vs Potency Tradeoffs for an RNA-
Synthesis Blocker
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Framework Deployment

• CompuCell3D: a widely used software 
environment for virtual tissue modeling

• Open source

• PDE solver suite, ODE solver (libRoadrunner)

• Real-time GUI-based interactive simulations

• Code editor supporting easy model specification

• HPC deployment (e.g., Carbonate at IU)

• Modular model specification using XML and 
Python
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Collaborative, Concurrent 
Model Development
• Simulation framework is designed with 

interchangeable, shareable, and extensible
model modules (architecture like the Python 
programming language)

• Simulation specification: load a set of model 
modules

• Built-in support for seamlessly downloading, 
adding, using and uploading add-on model 
modules

• Architecture prevents collision during concurrent 
development

• Framework and library are maintained on 
GitHub: collaborative public development
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Main simulation script

Load from 

main framework

Load from 

add-on library

Group A recovery model: RecoverySimple

Dead cells resurrect with a fixed probability

Group B recovery model: RecoveryNeighbor

Extend recovery model by Group A with 

neighbor-dependent recovery probability

Overwrite recovery criterion

Import recovery model by Group A

(Add-on library) (Model Module) (Model Specification)

Define a recovery criterion

Define what recovery means

Test for recovery at each step

Copy the recovery model by Group A

Import model parameters defined in a different script

Import model parameters defined in a different script

Get CompuCell3D’s model specification features



Building a Better Simulation 
Framework Together
• Continuous development of framework to better 

support community development

• Default framework is particular to SARS-CoV-2, 
but supports modeling other viruses

13

Integrated Compartmental HCV subcellular model 

(Dahari, Ribeiro, Rice, Perelson, J Virol, 2007)

𝑑𝑅𝑝
𝑐𝑦𝑡

𝑑𝑡
= 𝑘2𝑇𝑐 + 𝑘𝑃𝑜𝑢𝑡𝑅𝑃 − 𝑘𝐼𝑅𝑖𝑏𝑜𝑅𝑃

𝑐𝑦𝑡
− 𝑘𝑃𝑖𝑛𝑅𝑃

𝑐𝑦𝑡
− 𝜇𝑃

𝑐𝑦𝑡
𝑅𝑃
𝑐𝑦𝑡

+ 𝑛𝐻𝐶𝑉𝑟𝑢𝑈

𝑑𝑇𝑐
𝑑𝑡

= 𝑘𝐼𝑅𝑖𝑏𝑜𝑅𝑃
𝑐𝑦𝑡

− 𝑘2𝑇𝑐 − 𝜇𝑇𝑐𝑇𝑐

𝑑𝑃𝑐𝑦𝑡

𝑑𝑡
= 𝑘2𝑇𝑐 − 𝑘𝑐𝑃

𝑐𝑦𝑡

𝑑𝐸𝑐𝑦𝑡

𝑑𝑡
= 𝑘𝑐𝑃

𝑐𝑦𝑡 − 𝑘𝐸𝑖𝑛𝐸
𝑐𝑦𝑡 − 𝜇𝐸

𝑐𝑦𝑡
𝐸𝑐𝑦𝑡

𝑑𝑅𝑃
𝑑𝑡

= −𝑘3𝑅𝑃𝐸 + 𝑘4𝑝𝑅𝐼𝑑𝑠 + 𝑘𝑃𝑖𝑛𝑅𝑃
𝑐𝑦𝑡

− 𝑘𝑃𝑜𝑢𝑡 + 𝜇𝑃 𝑅𝑃

𝑑𝑅𝑑𝑠
𝑑𝑡

= 𝑘4𝑚𝑅𝐼𝑝 + 𝑘4𝑝𝑅𝐼𝑑𝑠 − 𝑘5𝑅𝑑𝑠𝐸 − 𝜇𝑑𝑠𝑅𝑑𝑠

𝑑𝐸

𝑑𝑡
= 𝑘𝐸𝑖𝑛𝐸

𝑐𝑦𝑡 + 𝑘4𝑚𝑅𝐼𝑝 + 𝑘4𝑝𝑅𝐼𝑑𝑠 − 𝑘3𝑅𝑃𝐸 − 𝑘5𝑅𝑑𝑠𝐸 − 𝜇𝐸𝐸

𝑑𝑅𝐼𝑝

𝑑𝑡
= 𝑘3𝑅𝑃𝐸 − 𝑘4𝑚𝑅𝐼𝑝 − 𝜇𝐼𝑝𝑅𝐼𝑝

𝑑𝑅𝐼𝑑𝑠
𝑑𝑡

= 𝑘5𝑅𝑑𝑠𝐸 − 𝑘4𝑝𝑅𝐼𝑑𝑠 − 𝜇𝐼𝑑𝑠𝑅𝐼𝑑𝑠

Revised viral replication model
𝑑𝑈

𝑑𝑡
= 𝑈𝑝𝑡𝑎𝑘𝑒 − 𝑟𝑢𝑈

𝑛𝐻𝐶𝑉𝑅 = 𝑅𝑃
𝑐𝑦𝑡

𝑑𝑃

𝑑𝑡
= 𝑟𝑡𝑅 − 𝑟𝑝𝑃

𝑑𝐴

𝑑𝑡
= 𝑟𝑝𝑃 − 𝑅𝑒𝑙𝑒𝑎𝑠𝑒



Extending the Framework: Enhanced Immune 
Response Modeling
• Collaboration with Profs. Ericka 

Mochan (Carlow U.) and G. Bard 
Ermentrout (U. Pittsburgh)

• Approach: generate a spatial 
model analogue of their calibrated 
ODE model of influenza and 
immune (innate and adaptive) 
response
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Nonlethal scenario Lethal scenario

Price, Mochan et. al, J Theor. Biol., 2015
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