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Abstract  
The  COVID-19  crisis  has  shown  that  classic  sequential  models  for  scientific  research  are  too               
slow  and  do  not  easily  encourage  multidisciplinary  scientific  collaboration.  The  need  to  rapidly              
understand  the  causes  of  differing  infection  outcomes  and  vulnerabilities,  to  provide  mechanistic             
frameworks  for  the  interpretation  of  experimental  and  clinical  data  and  to  suggest  drug  and               
therapeutic  targets  and  to  design  optimized  personalized  interventions  all  require  the            
development  of  detailed  predictive  quantitative  models  of  all  aspects  of  COVID-19.  Many  of              
these  models  will  require  the  use  of  common  submodels  describing  specific  aspects  of  infection               
( e.g. ,  viral  replication)  but  combine  them  in  novel  configurations.  As  a  contribution  to  this               
development  and  as  a  proof-of-concept  for  some  components  of  these  models,  we  present  a               
multi-layered  2D  multiscale,  multi-cell  model  and  associated  computer  simulations  of  the            
infection  of  epithelial  tissue  by  a  virus,  the  proliferation  and  spread  of  the  virus,  the  cellular                 
immune  response  and  tissue  damage.  Our  initial,  proof-of-concept  model  is  built  of  modular              
components  to  allow  it  to  be  easily  extended  and  adapted  to  describe  specific  viral  infections,                
tissue  types  and  immune  responses.  Immediately  after  a  cell  becomes  infected,  the  virus              
replicates  inside  the  cell.  After  an  eclipse  period,  the  infected  cells  start  shedding  diffusing               
infectious  virus,  infecting  nearby  cells,  and  secretes  a  short-diffusing  cytokine  signal.            
Neighboring  cells  can  take  up  the  diffusing  extracellular  virus  and  become  infected.  The              
cytokine  signal  calls  for  immune  cells  from  a  simple  model  of  the  systemic  immune  response.                
These  immune  cells  chemotax  and  activate  within  the  tissue  in  response  to  the  cytokine  profile.                
Activated  immune  cells  can  kill  underlying  epithelial  cells  directly  or  by  secreting  a              
short-diffusible  toxic  chemical.  Infected  cells  can  also  die  by  apoptosis  due  to  the  stress  of  viral                 
replication.  We  do  not  include  direct  cytokine  mediated  protective  factors  in  the  tissue  or               
distinguish  the  complexity  of  the  immune  response  in  this  simple  model.  Despite  unrealistically              
fast  viral  production  and  immune  response,  the  current  base  model  allows  us  to  define  three                
parameter  regimes,  where  the  immune  system  rapidly  controls  the  virus,  where  it  controls  the               
virus  after  extensive  tissue  damage,  and  where  the  virus  escapes  control  and  infects  and  kills  all                 
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cells.  We  can  simulate  a  number  of  drug  therapy  concepts,  like  delayed  rate  of  production  of                 
viral  RNAs,  reduced  viral  entry,  and  higher  and  lower  levels  of  immune  response,  which  we                
demonstrate  with  simulation  results  of  parameter  sweeps  of  select  model  parameters.  From             
results  of  these  sweeps,  we  found  that  successful  containment  of  infection  in  simulation  directly               
relates  to  inhibited  viral  internalization  and  rapid  immune  cell  recruitment,  while  spread  of              
infection  occurs  in  simulations  with  fast  viral  internalization  and  slower  immune  response.  In              
contrast  to  other  simulations  of  viral  infection,  our  simulated  tissue  demonstrates  spatial  and              
cellular  events  of  viral  infection  as  resulting  from  subcellular,  cellular,  and  systemic  mechanisms.              
To  support  rapid  development  of  current  and  new  submodels,  we  are  developing  a  shared,               
publicly  available  environment  to  support  collaborative  development  of  this  framework  and  its             
components.  We  warmly  invite  interested  members  of  the  biological,  medical,  mathematical  and             
computational   communities   to   contribute   to   improving   and   extending   the   framework.   

Introduction   

Motivation  
Viruses  are  obligate  intracellular  parasites  that  exist  almost  everywhere  on  the  planet.             

Viruses  require  a  host  to  replicate  and  have  the  ability  to  infect  humans,  animals,  plants,  fungi                 
and  bacteria.  They  are  considered  to  be  the  most  abundant  biological  entity  on  the  planet.                
Viruses  cause  a  number  of  cancers  ( e.g. ,  human  papillomavirus  (HPV)  causes  cervical  cancer)              
and  infectious  diseases  such  as  rabies,  herpes,  flu,  common  cold,  severe  acute  respiratory              
syndrome  (SARS),  Middle  East  respiratory  syndrome  (MERS),  and  acquired  immunodeficiency           
syndrome  (AIDS).  Viruses  vary  in  complexity,  genome  size  and  mode  of  transmission  and              
infection.  They  are  composed  of  either  DNA  or  RNA  as  their  genetic  material  surrounded  by  a                 
coat  of  proteins,  lipids  or  glycoproteins.  Throughout  human  history,  viruses  have  been             
responsible  for  a  number  of  deadly  global  pandemics  such  as  the  Spanish  Flu  1918,  Hong  Kong                 
Flu  1968,  Severe  acute  respiratory  syndrome  (SARS)  2003,  Swine  Flu  2009,  Ebola  2014,  Zika               
2015  and  the  current  Coronavirus  disease  of  2019  (COVID-19).  COVID-19  has  now  altered  the               
environment,  and  socioeconomic  status  of  human  life.  The  current  global  outbreak  of  COVID-19              
has  reinforced  the  need  for  rapid  and  sufficient  characterization  and  prediction  of  the  pathways               
for   highly   contagious   viral   related   disease.  

Biological   Background  

Betacoronavirus   Life   Cycle  
Severe  acute  respiratory  syndrome  coronavirus  2  (SARS-CoV-2)  is  an  enveloped  virus            

with  a  positive  sense,  single  stranded  RNA  genome  (ssRNA+).  ssRNA  +  viruses  have  mutation               
rates  that  are  millions  of  times  higher  than  that  of  their  hosts [1] .This  characteristic  allows                
ssRNA  +  viruses  to  have  enhanced  virulence  and  evolution  rates,  which  makes  this  particular               
category  of  virus  complex [2,3] .  The  genomic  evolutionary  history  of  SARS-CoV-2  shows  lower              
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mutation  rates  than  other  ssRNA  +  viruses  such  as  influenza [3–7] .  Its  genome  encodes  16                
non-structural  proteins,  4  structural  proteins  and  7  accessory  proteins  (NCBI  accession  #:             
NC_045512) [8] .  SARS-CoV-2  displays  two  key  spike  proteins  (S1  and  S2)  on  its  surface  that                
are  vital  for  viral  attachment  and  internalization [9,10] .  The  S1  spike  protein  is  responsible  for                
the  initial  binding  to  host  cells,  whereas  the  S2  spike  protein  is  activated  by  proteolytic  cleavage                 
by  host  cell  proteases  that  mediate  host  cell-viral  membrane  fusion [11] .  SARS-CoV-2  shares              
80%  sequence  identity  with  the  previously  identified  SARS-CoV,  the  virus  identified  as  the              
causative  agent  of  SARS  in  2003 [2,8] .  Although  inherently  different,  both  SARS-CoV  and              
SARS-CoV-2  retain  similar  key  amino  acid  residues  which  lead  to  similar  infection  pathways              
such  as  primary  binding  domain  to  host  cell  surface  receptor  angiotensin-converting  enzyme  2              
(ACE2)    [12,13] .   

Mode   of   Entry  
Viral  transmission  and  attachment  are  the  first  steps  of  a  viral  infection [14] .  Principal               

modes  of  transport  and  transmission  of  RNA  +  sense  strand  virus  particles  include  cilia,  air,                
mucus,  and  water [15] .  Zoonotic  origin,  as  well  as,  high  transmission  rates  of  SARS-CoV-2               
through  human-human  interactions  has  led  to  widespread  global  infection [16,17] .  Both            
SARS-CoV  and  SARS-CoV-2  can  infect  host  cells  by  two  different  modes  of  entry  1)  binding  to                 
the  host  cell  surface  receptor  angiotensin-converting  enzyme  2  (ACE2),  triggering           
pH-dependent  proteolytic  activation  of  S2  spike  protein  by  cathepsin  L  resulting  in  endocytosis              
of  the  viral  particle  or  by  2)  binding  to  the  ACE2  receptor  and  triggering  pH-independent                
proteolytic  activation  of  the  S2  spike  protein  by  the  transmembrane  serine  protease  TMPRSS2              
that  often  resides  near  the  ACE2  receptor  on  the  host  cell  surface  resulting  in  host  cell-viral                 
membrane  fusion [12,18–20] .  Viral  internalization  occurs  in  the  receptor-binding  domain  of  host             
cells   via   endocytosis   and/or   fusion    [21–23] .   

Target   Host   Epithelial   Cells  
SARS-CoV-2  follows  a  disseminated  infection  pathway  that  has  shown  the  ability  to             

locally  infect  mammalian  respiratory  tissue [17,24–26] .  Epithelial  tissue  lines  the  outer  surface             
of  organs  and  blood  vessels  throughout  the  body [27] .  As  well  as  the  inner  surface  of  cavities  in                   
many  internal  organs  including  the  lungs [28] .  Mammalian  respiratory  passageways  from  the             
naval  cavity  through  the  bronchi  are  lined  by  ciliated,  columnar  epithelium [28] .  While  lung               
alveoli  are  lined  by  a  thin  layer  of  simple  squamous  epithelium [29] .  In  the  lung,  epithelial  cells                  
seperate  the  airways  and  potentially  harmful  materials  within  them  from  the  bloodstream,  while              
allowing  for  the  free  diffusion  of  carbon  dioxide  and  oxygen [28,29] .  Viral  entry  occurs  in  the                 
receptor-binding  domain  of  host  epithelial  cells  via  endocytosis  and/or  fusion [21–23] .            
Establishing  that  transport  of  viral  proteins  and  internalization  of  SARS-CoV-2  must  occur  first  at               
the   epithelial   tissue   layer   in   the   respiratory   system   before   spreading   to   inner   tissue.   
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Viral   Replication  
Viral  replication  of  SARS-CoV-2  and  other  enveloped  single  stranded  positive  sense            

RNA  viruses  occurs  within  the  cytoplasm  of  host  epithelial  cells  after  unpacking  of  viral  proteins                
from  the  internalized  particle [30] .  An  RNA-dependent  RNA  polymerase  (RdRp)  encoded  within             
the  virus  genome  produces  a  negative  strand  from  positive  host  RNA  strand  by  hijacking  host                
epithelial  cell  translation  machinery.  The  negative  viral  RNA  strand  is  then  used  to  produce               
more  positive  RNA  strands  and  smaller  positive  strand  subgenomic  sequences [31] .            
Subgenomic  sequences  are  translated  to  produce  viral  proteins [31] .  After  replication  inside  the              
host,  viral  positive  RNA  strands  and  viral  proteins  are  transported  to  the  Endoplasmic  Reticulum               
(ER)  where  they  are  assembled  to  form  new  virions.  New  virions  are  then  packaged  into                
vesicles  and  transported  to  the  cell  membrane  for  release  into  the  extracellular  environment              
through  the  continuous  process  of  viral  budding [32–34] .  The  yield  for  newly  produced  virions  is                
not  clearly  defined  in  SARS-CoV-2  as  it  is  with  lytic  viruses [35] .  The  main  regulation  of  the  viral                   
replication  process  occurs  at  the  replication  stage,  because  the  balance  between  replication  and              
translation  must  be  carefully  maintained  in  order  to  achieve  maximum  rates  of  replication  and               
translation   without   exhaustion   of   host   cell   resources    [33,34] .   

Triggering   Innate   Immune   Response  
The  innate  immune  system  is  the  first  response  to  encounter  SARS-CoV-2  infection.             

Production  of  SARS-CoV-2  viral  proteins  interfere  with  various  host  cell  metabolic,  regulatory             
and  delivery  pathways [36,37]  .  The  detection  of  foreign  viral  proteins  and  the  hijacking  of  host                 
cell  translation  machinery  triggers  immune  system  gene  expression [38] .  This  triggered  genetic             
expression  signals  the  production  of  type  I  interferons  (IFNs),  cytokines,  chemokines,            
interleukins,  myeloids,  and  small  molecule  RNA  signals  through  a  series  of  toll-like  receptors              
(TLRS) [39] .  This  process  occurs  in  order  to  alert  local  cell  populations  of  infection  through  small                 
molecule  signaling  and  to  stimulate  the  growth  and  recruitment  of  immune  cells [40] .  The               
immune  cells  that  are  targeted  for  early  activation  in  the  innate  immune  response  are  dendritic                
cells,  macrophages,  neutrophils,  mast  cells,  basophils,  eosinophils,  leukocytes,  and  natural           
killer  (NK)  cells [28] .  The  stimulated  activation  of  immune  cells  such  as  macrophages  and               
monocytes  interplays  the  recruitment,  initiation,  and  maturation  of  NK  cells  and  naive  T  cells               
from  stem  cells  in  bone  marrow  to  the  site  of  local  infection [40] .  Simultaneously,  programmed                
cell  death  (apoptosis)  is  initiated  in  cells  with  hijacked  translation  machinery  through  caspase              
activation  and  through  contact  with  NK  cells [41–43] .  After  immune  cell  recruitment,  mature              
monocytes,  macrophages,  and  T  cell  populations  begin  to  deal  with  cells  infected  by  virus  by                
direct  killing [44–46] .  This  initial  innate  immune  response  that  takes  place  within  hours  and  days                
of  infection  involves  multiple  signaling  molecules  acting  upon  multiple  complex  signaling            
pathways [47,48] .  Cytokines  produced  in  this  time  period  are  associated  with  early  clinical              
symptoms   of   viral   infection   such   as   fever,   fatigue,   and   cough    [49] .   
 

Existing  kinetic  viral  replication  models  address  how  viruses  play  a  significant  role  in              
human  health  and  have  the  ability  to  change  population  trends  and  dynamics [50,51] ;  however,               
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it  remains  a  challenge  to  predict  how  novel  viruses  interact  with  their  host  cellular  environments.                
Severe  acute  respiratory  syndrome  coronavirus  2  (SARS-CoV-2)  is  the  causative  agent  of  the              
current  global  pandemic  and  existing  kinetic  viral  replication  models  do  not  address  the  need  for                
a   specific   multicellular   model   representing   the   infection   pathway.   

Modeling   Background  

Context  
Mathematical  models  and  computer  simulations  have  been  extensively  used  to  study            

in-host  progression  of  viral  infection.  Kinetics  approaches  are  commonly  used  to  model  different              
stages  of  viral  replication  cycle  such  as  binding  and  internalization [52,53] ,  replication  and              
translation [54,55] ,  assembly,  packing  and  release [56,57] .  These  models  have  been            
developed  in  the  context  of  different  viral  families:  positive  single-stranded  RNA  viruses  such  as               
Hepatitis  Virus  C,  Poliovirus  and  Semliki  Forest  Virus [52,58,59] ,  negative  single-stranded  RNA             
viruses  such  as  Influenza  A [60,61] ,  single-stranded  RNA  retroviruses  such  as  Human             
Immunodeficiency  Virus  1 [62,63] ,  double-stranded  DNA  viruses  such  as  Herpes  Simplex  Virus             
1 [64]  and  double-stranded  DNA  retroviruses  such  as  Hepatitis  Virus  B [65] .  The  progression               
of  HIV [66–69]  and  infection  and  the  spreading  of  Influenza  infection  in  lung  tissue [70,71]                
have  been  modeled  using  agent-based  spatial  approaches.  With  respect  to  the  family  of  beta               
coronaviruses  spatial  models  have  been  developed  motivated  by  the  offset  of  the  ongoing              
pandemic    [72] .  

Our   Approach   to   an   Initial   Proof-of-Concept   Model  
In  this  paper  we  propose  a  modular  framework  to  model  interactions  between             

generalized  epithelial,  immune  cells  and  their  extracellular  environment  during  viral  infection.            
The  model  can  be  used  to  develop  and  interrogate  hypotheses  related  to  the  spatiotemporal               
dynamics  of  viral  SARS-CoV-2  infection  of  critical  nasopharyngeal  and  lung  tissue  and  model              
Covid-19  progression.  The  framework  is  intended  to  serve  as  a  base  model  for  constructing  and                
implementing  more  advanced  models  of  targeted  cellular-  and  intracellular-level  phenomena  in            
tissue  after  initial  exposure.  In  its  current  state,  it  has  not  been  formally  peer-reviewed,  and                
should   not   be   used   for   patient   diagnostics   or   predicting   clinical   outcomes.   
 

The  model  and  its  implementation  can  be  employed  and  developed  to  interrogate             
questions  and  mechanistic  hypotheses  about  the  spread  of  a  virus  and  how  the  interplay               
between   viral   spreading   and   immune   response   determine   the   outcome   of   the   disease,   such   as:   

● Why  does  the  progression  of  the  disease  seem  to  be  dependent  on  the  initial               
viral   exposure   level?  

● Why   is   the   start   time   of   symptoms   and   immune   response   so   variable?  
● What   is   the   role   of   cytokine   signaling   in   explaining   immune   response   variability?  
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● What  are  the  specific  factors  and  key  players  determining  the  offset  of  early              
immune   response?  

The  model  includes  a  representation  of  extracellular  virus  in  the  mucus,  epithelial  cells  and               
immune  cells.  It  also  includes  the  processes  of  epithelial  cell  infection  by  extracellular  virus,  viral                
replication  and  cell  damage  inside  epithelial  cells,  release  of  viruses  by  infected  epithelial  cells,               
immune  cell  response  to  infected  epithelial  cells  and  immune  cell  killing  of  infected  and               
non-infected   epithelial   cells.   

Results  
In  this  section  we  present  results  from  simulations  intended  to  interrogate  the  parameter              

space  of  the  model  framework  (see Models  and  Methods )  with  respect  to  select,  critical               
parameters  of  interest  to  understanding  SARS-CoV-2  and  viral  infection,  in  general.  All             
simulations  were  performed  according  to  specifications  described  in Simulation  Specification ,           
and  results  described  in  that  same  section  were  recorded  concerning  spatial,  population,  and              
system-level  metrics  for  each  simulation  trial  of  each  parameter  set  presented  here.  All              
simulations   were   performed   using   CompuCell3D    [73] .   

Model  Captures  Spatial  Dynamics  of  Viral  Infection  and  Spread  in  Epithelial            
Tissue  

We  first  determined  a  baseline  set  of  parameters  (Table  1)  for  which  widespread              
infection  occurs  over  the  course  of  simulation  time.  We  initiate  our  simulation  with  a  sheet  of                 
uninfected  epithelial  cells,  no  immune  cells,  diffusive  virus,  or  diffusive  cytokine,  and  a  sheet  of                
one  initially  infected  cell  at  the  center  of  the  simulation  domain  (Figure  1A).  As  viral  replication                 
progresses,  the  initial  infected  cell  starts  secreting  virus  into  the  extracellular  environment.             
Neighboring  cells  are  infected  by  viruses  in  their  extracellular  environment  and  initiate  their  own               
viral  replication  cycles.  Infected  cells  also  secrete  cytokines,  initiating  the  recruitment  of  immune              
cells   by   exfiltration   of   cytokine   from   the   simulation   domain   (Figure   1B).  
 

The  reference  simulation  shows  significant  immune  cell  recruitment  between  400  and            
800  Monte  Carlo  steps  (MCS),  but  the  virus  spreads  uncontrolled,  leading  to  the  eventual               
infection  and  death  of  all  epithelial  cells,  At  time  200  MCSs  infection  has  already  spread  to                 
neighboring  cells.  Immune  cells  have  already  been  recruited  to  the  tissue,  and  dead  cells  not  at                 
the  initial  site  of  infection  indicate  likely  cytotoxic  killing.  At  time  400  MCSs  massive  cell  death                 
has  occured  centered  about  the  initial  site  of  infection.  Immune  cell  recruitment  from  increased               
levels   of   diffusive   cytokine   has   more   than   doubled   the   number   of   immune   cells   in   the   simulation.   
 

By  600  MCSs  infection  has  reached  the  simulation  domain,  indicating  total  spread  of  the               
infection.  Immune  cells  continue  to  be  recruited  even  to  800  MCSs,  even  though  most  cells                
were  dead,  due  to  the  delay  in  immune  response.  By  time  1,000  MCSs,  all  cells  were  dead  and                   
many  immune  cells  had  exited  the  simulation.  The  number  of  infected  cells  was  maximal  at  700                 
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MCSs,  the  amount  of  extracellular  virus  was  maximal  at  860  MCSs.  The  extracellular  cytokine               
level  was  maximal  at  740  MCSs.  As  the  number  of  live  cells  decreases,  the  amount  of                 
extracellular  virus  and  the  amount  of  extracellular  proinflammatory  cytokine  decreases.  The            
immune  recruitment  signal  peaks  at  740  MCSs  (1480  minutes),  leading  to  infiltration  of  immune               
cells  too  late  to  contain  the  spread  of  infection  (maximal  number  of  immune  cells  at  870  MCSs,                  
1740  minutes).  For  all  simulation  parameters  see  Table  1.  Code  to  execute  this  specific               
simulation  for  these  parameters  in  CompuCell3D  is  available  at          
https://github.com/covid-tissue-models/covid-tissue-response-models/tree/cc3d_first_model_v0 
_cand/CC3D/Models/BiocIU/SARSCoV2MultiscaleVTM/interesting-results/Preliminary%20Set% 
201/simimg .  
 

 
Figure  1. Two-and-a-half  dimensional  CompuCell3D Simulation  of  the  progression  of  infection  in  a  patch  of                
epithelial  tissue  of  size  360  μm  x  360  μm  starting  from  a  single  infected  cell  for  a  representative  simulation                    
using  the  baseline  parameters  given  in  Table  1. A:  Snapshots  of  simulation  configuration  vs  time.  Columns,  left  to                   
right:  0  Monte  Carlo  steps  ( MCS )  (time  of  infection),  200  MCS  (400  minutes  after  infection),  400  MCS  (800  minutes),                    
600  MCS  (1200  minutes),  800  MCS  (1600  minutes),  and  1,000  MCS  (2000  minutes).  Top  row:  two-dimensional                 
epithelial  cell  layer,  colored  to  show  cell  state:  Blue:  uninfected;  Green:  early  infected,  not  shedding  virus;  Red:                  
infected,  shedding  virus;  Black:  dead.  Second  row:  Position  of  immune  cells  resident  in  a  two-dimensional  layer                 
above  the  epithelial  layer.  Third  row:  Extracellular  concentration  of  virus,  color  coding  autoscaled  so  red  is  current                  
maximum  concentration  and  blue  is  current  minimum  concentration.  See  (C)  for  minimum  and  maximum  values.                
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Bottom  row:  Extracellular  concentration  of  proinflammatory  cytokine,  color  coding  autoscaled  so  red  is  current               
maximum  concentration  and  blue  is  current  minimum  concentration.  See  (C)  for  minimum  and  maximum  values.                
show  the  progression  of  simulated  infection  from  an  initially  infected  (green)  cell  in  the  epithelial  layer.  B:  The  immune                    
recruitment  signal  vs  time  in  MCS  (one  MCS  =  2  minutes).  corresponds  to  the  rate  of  immune  cell  introduction   S           S          
into  (for  positive  values)  or  removal  from  (for  negative  values)  the  simulated  region  per  unit  time.  C:  Minimal  and                    
maximal  concentrations  for  the  fields  in  Rows  3  and  4  of  (A)  extracellular  viral  concentration  and  proinflammatory                  
cytokine.  Simulations  use  periodic  boundary  conditions  in  the  plane  of  the  epithelial  sheet,  and  Neumann  conditions                 
normal   to   the   epithelial   sheet.   
 

Variation  of  Model  Parameters  Produces  Distinctive  Outcomes  of  the          
Progression   of   Infection  

 
Figure  2. Increasing  virus-receptors  association  affinity  drives  the  system  towards  widespread  cell  death .              
Reducing  the  virus-receptors  association  affinity  coefficient  by  a  factor  of  100  while  holding  all  other  parameters       kon            
constant  (left  column  of  A  and  B)  produced  diminished  infection  (top  row)  and  varying  outcomes  of  cell  death  (bottom                    
row)  compared  to  the  baseline  parameter  set  (right  column  of  A  and  B)  over  10  simulations.  A:  Trial  results  of  each                      
parameter  set.  B:  Mean  results  of  simulated  trials,  where  shaded  blue  areas  show  one  standard  deviation  in  each                   
direction.   Top   and   bottom   rows   show   the   number   of   infected   and   dead   cells,   respectively.   
 

Critical  parameters  control  outcomes  of  the  simulation.  Increase  in  the  virus-receptor            
association  affinity ,  a  parameter  that  controls  the  internalization  of  extracellular  viral    kon           
particles  into  epithelial  cells,  drives  the  system  toward  quantitative  distincts  simulation  outcomes             
(Figure  2).  We  generated  results  using  an  established  baseline value  and  a  100-fold           kon     
increase  from  the  baseline.  Baseline  shows  a  low  number  of  infected  and  dead  cells  at  the       kon             
end  of  the  simulation  (Figure  2A,  left  columns).  Increasing  results  in  an  increased  number  of           kon        
infected  cells  during  the  simulation  and  increased  a  corresponding  number  of  final  dead  cells               
(Figure  2A,  right  columns).  Increasing  results  in  increased  average  number  of  infected  and       kon          
dead   cells,   as   well   as   increased   variability   between   simulation   replicates   (Figure   2B).  
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Variation  in  Virus-receptors  Association  Affinity  and  Immune  Response         
Delay   Drive   the   System   Towards   Containment   or   Widespread   Infection   
 

 
Figure  3. Variations  in  viral  internalization  and  immune  response  demonstrate  a  parameter  space  containing               
deterministic  uncontrolled  infection  and  containment,  as  well  as  stochastic  outcomes .  A  logarithmic  parameter              
sweep  of  virus-receptors  association  affinity  and  immune  response  delay  produced  consistent  viral      kon      βdelay     
containment  (top  right,  green  shared  subplots),  consistent  viral  spread  (bottom  left,  orange  shared  subplots),  and                
parameter  sets  with  stochastic  outcomes.  A,  B:  Mean  number  of  dead  cells  (A)  and  total  diffusive  virus  (B)  in  the                     
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simulation  domain  over  simulation  time  for  ten  trials  of  all  parameter  sets  of  the  sweep.  Blue  shaded  areas  demarcate                    
one   standard   deviation   in   each   direction.   
 

Variations  in  critical  and  parameters  drive  the  system  toward  two  distinct     βdelay    kon         
simulation  outcomes:  containment  and  widespread  infection  (red  and  shaded  regions). ,  a            βdelay   
parameter  that  controls  the  responsiveness  of  immune  cell  recruitment  to  local  diffusive  cytokine              
in  the  simulation  domain.  We  generated  simulations  using  established  baseline  values  for              kon  
and  and  compared  results  with  simulations  generated  using  10-fold  and  100-fold   βdelay            
increase  and  decrease  from  the  baseline  values  (Figure  3).  Parameter  variation  produces             
distinctive  qualitative  outcomes  in  the  number  of  dead  cells  (Figure  3A).  Baseline  values  of               
parameters  result  in  propagation  of  the  infection  through  the  tissue  and  widespread  death  of               
epithelial  cells  (Figure  3A,  center  panel).  Increasing  and  decreasing  produces  drives         kon     βdelay    
the  system  towards  widespread  infection  and  cell  death  with  small  variability  between  simulation              
replicated  (Figure  3A,  red  shaded  panels).  In  this  region,  decreasing  decreases  the  rate            βdelay     
of  cell  death  as  shown  by  the  inflection  points  on  the  number  of  dead  cells  occurring  earlier  for                   
smaller   values   of   .  βdelay   
 

Decreasing  and  increasing  drives  the  system  towards  containment  of  the   kon     βdelay         
initial  infection,  as  shown  by  early  saturation  in  the  number  of  dead  cells  (Figure  3A,  green                 
shaded  panels).  In  this  region,  increasing controls  the  rate  at  which  containment  is        βdelay        
achieved,  as  shown  by  saturation  being  arrived  at  earlier  for  bigger  values  of .  Also  in  this               βdelay     
region, controls  the  total  number  and  variability  of  infected  and  dead  cells  before   kon             
containment  whenever  is not  too  large,  as  shown  by  the  saturation  value  being  higher  for     βdelay             
increasing  values  of  (Figure  3A,  first  green  shaded  column).  For  the  remaining  regions,  the     kon             
final  outcome  of  the  simulation  is  undetermined,  since  the  number  of  dead  cells  is  still  changing                 
at   the   end   of   the   simulation.   
 

The  distinctive  qualitative  outcomes  of  the  simulation  can  also  be  observed  in  the              
dynamics  of  viral  diffusion  in  the  extracellular  environment  (Figure  3B).  In  the  widespread              
infection  region,  there  is  a  regime  of  fast  viral  growth  followed  by  a  regime  of  viral  clearance                  
(FIgure  3B  red  shaded  region).  In  this  region, controls  how  fast  the  maximum  concentration          kon       
of  virus  in  the  extracellular  environment  is  achieved  during  the  growth  regime,  as  shown  by  the                 
maximum  value  being  reached  at  earlier  for  increasing  values  of .  The  parameter            kon     βdelay

controls  the  amplitude  of  the  rebound  after  a  short  clearance  phase,  as  shown  by  the  distance                 
between  two  maximums  in  the  viral  concentration  curve  increasing  for  increasing  values  of              

.  βdelay  
 

In  the  containment  region,  the  same  two  qualitative  regimes  of  viral  growth  can  be               
observed  but  with  quantitative  different  properties  (Figure  3B  red  shaded  region).  An  initial              
growth  of  virus  is  followed  by  clearance  of  virus.  The  maximum  concentration  of  the  viral  field  is                  
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smaller  in  the  containment  region  than  the  widespread  infection  region.  In  these  region,               βdelay  
controls  the  clearance  rate  of  the  extracellular  virus  as  shown  by  the  rapid  decay  with  increasing                 
values  of .  The  time  scales  of  viral  growth  in  the  extracellular  environment  is  faster  than    βdelay               
the  rate  of  cell  death,  as  shown  by  maxima  in  the  extracellular  environment  occurring  before                
maxima   in   the   number   of   dead   cells.   

Increase  in  the  Rate  of  the  Immune  Response  and  Decrease  in            
Internalization   Drive   the   System   Towards   Containment   of   Infection  

 
Figure  4. Variations  in  viral  internalization  and  immune  response  are  reflected  in  key  metrics  of  viral  infection .                  
Metrics  relevant  to  the  characterization  of  infection  and  immune  response  over  simulation  time  were  calculated  for  all                  
trials  of  the  parameter  sweep  portrayed  in  Figure  3.  Mean  values  of  the  metrics  were  calculated  for  all  ten  trials  of                      
each  parameter  set.  A:  Mean  final  number  of  dead  cells.  B:  Maximum  total  diffusive  virus  over  all  simulation  time.  C:                     
Maximum  total  diffusive  cytokine  over  all  simulation  time.  D:  Clearance  time,  measured  as  the  earliest  simulation  step                  
during   which   no   infected   cells   were   found,   counting   from   the   final   simulation   step.   
 

The  phase  space  for  key  output  metrics  reveal  that  decreasing  viral  internalization  and              
increasing  immune  response  consistently  drives  the  system  towards  containment  of  the            
infection  (Figure  4).  High  viral  internalization  is  generally  correlated  with  high  number  of  final               
dead  cells  (Figure  4A),  high  number  of  maximum  viruses  (Figure  4B)  and  high  number  of                
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maximum  cytokine  levels  (Figure  4C).  In  general,  values  for  each  of  these  metrics  increases               
proportionally  with  increased  internalization,  with  the  lowest  value  providing  the  lower  bound             
and  the  highest  value  providing  the  upper  bound.  A  noticeable  exception  is  the  max  cytokine                
level,  where  at  least  one  of  the  lower  viral  internalization  values  (0.1)  produces  a  high  number  of                  
cytokines   (Figure   4C).   

Rapid  immune  response  is  generally  associated  with  lower  number  of  final  dead  cells,              
maximum  virus  and  maximum  cytokine  in  the  extracellular  environment.  For  fixed  viral             
internalization  values,  each  of  these  output  metrics  decreases  with  increase  in  the  rate  of               
immune  response.  In  general,  the  output  metrics  behave  as  decreasing  saturation  functions  on              
the  immune  response,  with  the  exception  of  the  cytokine  levels  for  one  of  the  lower  viral                 
internalization  values  (0.1),  where  there  is  a  rapid  growth  in  cytokine  levels  followed  by  a  long                 
decay   (Figure   4C).   
 

Clearance  time  measures  the  earliest  time  from  the  end  of  the  simulation  at  which  no                
infected  cells  are  found  inside  the  simulation  domain  (Figure  4D).  Higher  viral  internalization  is               
generally  associated  with  smaller  clearance  times  for  immune  response  rates  below  the             
baseline  and  with  higher  clearance  times  for  immune  response  rate  above  the  baseline.  With               
respect  to  the  immune  response,  clearance  times  show  varying  regimes,  but  in  general  there  is                
a  slow  increase  in  clearance  times  for  smaller  immune  response  rates,  and  a  sharp  decrease  in                 
clearance  times  for  higher  immune  response  rates.  Viral  internalization  controls  at  which  level  of               
immune  response  rate  the  sharp  decline  in  clearance  times  starts.  The  decline  in  clearance               
times  occurs  at  slower  immune  response  rate  for  viral  internalization  below  the  baseline  and               
higher   immune   response   rates   for   values   above   the   baseline.  

Variation  in  the  Rate  of  Viral  Replication  Show  Difference  Outcomes  of  the             
Diseases  
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Figure  5. Insufficient and  excessive  viral  replication  rates  prohibit  spread  of  infection in  silico .  Holding  all  other                  
parameters  constant,  a  logarithmic  parameter  sweep  of  the  viral  replication  rate  showed  a  bounded  range  of            rmax       
parameter  values  that  produces  spread  of  infection.  For  low  viral  replication  rates,  immune  cells  were  recruited  that                  
successfully  eliminated  the  infected  cell  before  viral  secretion  could  spread  infection  to  neighboring  cells.  For  high                 
viral  replication  rates,  excessive  internalized  viral  particles  due  to  fast  replication  induced  apoptosis  before  spread  of                 
the  virus  to  neighboring  cells.  A:  Number  of  dead  cells  over  simulation  time  in  ten  trials  of  each  variation  (top  row)  and                       
the  mean  value  of  results  (bottom  row)  with  blue  shading  demarcating  one  standard  deviation  in  each  direction.  Large                   
variance  in  the  number  of  dead  cells  for  trials  with  the  variation  was  due  to  that  all  trials  either  produced             0r1 max          
complete  cell  death  or  nearly  none  at  all,  reflecting  that  the  parameter  set  with  this  variation  is  near  a  bifurcation  of                      
the  regimes  of  certain  massive  cell  death,  and  viral  containment  due  to  excessive  viral  replication  rate.  B:  Total                   
diffusive  virus  over  simulation  time  for  ten  trials  of  each  variation.  Marginal  diffusive  virus  was  measured  for                  
downward  variations.  C:  Number  of  infected  cells  over  simulation  time  for  ten  trials  of  each  variation.  D:  Mean  number                    
of  activated  immune  cells  over  simulation  time  for  ten  trials  of  each  variation,  with  blue  shading  demarcating  one                   
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standard  deviation  in  each  direction.  No  activated  immune  cells  were  measured  for  the  most  upward  variation,                 
indicating   death   of   the   initially   infected   cell   was   due   to   viral   apoptosis,   rather   than   by   cytotoxicity.   
 

In  our  second  parameter  sweep,  the  replication  rate  ( ,  from  the  viral  replication          rmax      
model)  was  varied  two  orders  of  magnitude  upward  and  downward  by  factors  of  ten  while                
holding  all  other  values  of  the  baseline  parameter  set  constant.  In  both  variations  of  slower                
replication  rate  ( i.e. ,  and ),  marginal  amounts  of  diffusive  viral  particles  were    r  10 1−

max   r  10 2−
max         

measured,  followed  by  the  activation  of  a  few  immune  cells  (Fig.  5).  Once  no  immune  cells  in                  
these  simulations  were  in  the  activated  state,  no  additional  activity  in  the  simulations  were               
measured   concerning   viral   infection.   

 
For  the  first  upward  variation  in  replication  rate  ( ),  all  cells  in  simulation  died  within         0r  1 max        

300  MCSs  in most  simulations.  However,  in  two  simulations  of  the  first  upward  variation,  the                 
initially  infected  cell  died  before  immune  cells  were  even  recruited  to  the  simulation  domain.               
This  same  phenomenon  was  observed  for  all  trials  of  the  second  upward  variation  ( ).              r  102

max  
Without  immune  cells,  the  only  mechanism  of  the  model  framework  available  to  kill  a  cell  is  that                  
of   viral   apoptosis.   

Discussion   and   Future   Perspectives  
We  have  produced  a  spatial  model  and  computer  simulation  of  epithelial  tissue  that              

includes  key  aspects  of  viral  infection,  replication  and  immune  response.  This  model,  while              
highly  simplified,  does  provide  a  number  of  very  suggestive  results,  including  showing  that  the               
viral  production  peaks  before  tissue  damage  as  seen  in  diseases  like  influenza  and  that  the                
control  of  immune  response  and  viral  spread  can  lead  to  conditions  in  which  the  virus  is  rapidly                  
controlled,  controlled  after  substantial  damage  or  uncontrolled.  We  have  studied  the  possible             
effect  of  a  drug  that  reduces  the  rate  of  RNA  polymerization  and  shown  that  it  can  lead  to                   
improved  viral  control  if  given  early.  A  key  next  step  would  be  to  determine  how  its  effectiveness                  
decreases   when   it   is   administered   progressively   later   after   infection.  

 
We  also  proposed  a  framework  for  collaborative  rapid  development  of  models  of  viral              

infection  and  immune  response.  We  recognize  that  our  overall  model  architecture  is  incomplete              
in  many  respects,  from  the  number  and  types  of  immune  cells  and  cytokines  to  the  processes                 
we  are  including  ( e.g. ,  the  cytokine  signals  from  an  infected  cell  can  alert  uninfected  cells  to  viral                  
challenge  and  increase  their  probability  of  apoptosis  or  reduce  their  rate  of  virus  production  after                
infection,  macrophage  can  scavenge  extracellular  virus,  immune  cells  can  be  infected  by  virus              
and  change  their  cytokine  relaying).  We  are  working  with  a  wide  variety  of  biological               
researchers  to  determine  the  additional  components  we  should  prioritize  to  add  to  our  high-level               
model   structure  
 

Our  model  is  open-source  and  organized  in  modules  that  are  free  to  extend,  reuse  and                
adapt.  We  would  like  to  develop  model  sharing  workflows  and  tools  to  facilitate  parallel,               
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independent  submodel  development.  The  key  to  such  collaborative  development  is  to  adopt             
guidelines  for  model  specification  and  sharing:  specify  models  and  submodels  at  the  conceptual              
and  quantitative  levels  with  well-defined  inputs,  outputs  and  validation  metrics  and  data  and  to               
implement  them  as  independently  executable  callable  components,  which  can  be  independently            
validated.   Some   of   the   directions   for   future   collaborative   developments   are:  

● Improvement  of  the  biological  realism  of  core  submodels.  In  our  preliminary  model,             
many  subcomponents  are  proof-of-concept  versions,  which  we  can  be  replaced  with            
more  supportable  models.  Accessible  areas  of  improvements  will  be  more  realistic            
models  of  viral  internalization  and  replication  (including  timing)  and  models  immune  cell             
response  ( e.g. ,  scavenging  of  virus  by  macrophages,  local  IFN-gamma  signaling  from            
infected   epithelial   cells   to   non-infected   cells   to   reduce   their   rate   of   viral   production).   

● Identification  of  model  parameters  corresponding  to  specific  critical  tissue          
(nasopharyngeal,  alveolar)  and  physiological  compartments  (throat,  upper  respiratory         
and  lower  respiratory  tracts).  Building  compartment  models  that  can  be  connected  using             
models   of   transport   of   virus,   cytokines   and   immune   cells   between   through   the   body.  

● Use  the  models  to  do  basic  disease  mechanism  studies  to  explore  the  ability  of  the                
model  to  simulate  immune  clearance  under  a  variety  of  different  situations  (effect  of              
initial  viral  load  and  locus  on  disease  progression  in  a  patch,  immune  excitability,  rate  of                
delay  in  signaling  to  lymph  nodes).  Identify  key  periods  when  infection  progression  is              
susceptible  to  particular  types  of  perturbation  ( e.g. ,  slowing  viral  replication  after  3  days              
generally   has   little   effect   on   outcome   in   influenza   models).  

● Studying  the  systemic  effects  of  possible  therapies  with  known  molecular  modes  of             
action, e.g. ,  remdesivir  is  an  analog  of  the  nucleoside  adenosine  and  targets  the              
RNA-dependent  RNA  polymerase  and  blocks  viral  RNA  synthesis  [75].  This  would            
reduce  the  rate  of  viral  replication  but  also  might  affect  the  intracellular  infection              
response  mechanisms  in  apparently  paradoxical  ways.  An  antibody  therapy  would           
introduce  humoral  response  mechanisms  earlier  in  the  infection.  Model  the  effect  of             
immune  stimulation  or  repression  at  different  stages  of  infection  to  optimize  dosage  and              
timing.   

● Studying  the  origins  of  population  variability  in  disease  progression,  by  modeling  the             
effects  of  hypertension,  immunosuppression,  diabetes  and  by  considering  how  they           
change   the   timing   of   critical   outcomes.   

● Benchmark  against  established  nonspatial  models  of  infection,  immune  response  and           
clearance.  We  are  working  to  implement  established  and  validated  nonspatial  models  of             
viral  infection  and  immune  response  and  replace  specific  boxes  in  these  models  ( e.g. ,              
viral  production,  cytokine  secretion  or  tissue  damage)  with  the  appropriate  spatial            
components  of  our  model.  By  starting  with  a  validated  ODE  and  adding  spatial              
components   gradually,   we   can   calibrate   our   spatial   models   and   validate   our   results.  

● Conduct  simultaneous  validation  by  building  multiple  implementations  of  the  conceptual           
and  quantitative  models  independently  and  simultaneously.  We  are  currently  working           
with  teams  in  Australia  and  Germany  to  develop  independent  multicellular           
implementations  of  our  underlying  conceptual  models  to  validate  them  in  parallel  with             
our   own   implementations.   
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The  COVID-19  crisis  has  shown  that  classic  sequential  models  for  scientific  research  are              

too  slow  and  do  not  easily  encourage  transdisciplinary  scientific  collaboration.  Our  open-source             
project  is  designed  to  allow  simultaneous  component  development  and  deployment  by  many             
groups  and  to  minimize  the  overhead  required  for  collaborative  development.  Model            
specification  is  compact  and  uses  simple  Python  scripts  to  make  model  development  accessible              
to  those  with  critical  disciplinary  knowledge  but  without  extensive  computational  experience.            
Transparency  and  validation  in  model  development  are  particularly  critical  in  a  disease  response              
model  especially  when  that  model  is  being  developed  rapidly  and  in  parallel.  We  are  already                
working  closely  with  the  CHASTE  and  Morpheus  multicell  modeling  teams  to  develop  validating              
replications  of  our  base  conceptual  model.  This  near-simultaneous  model  replication  and  its             
lessons   for   model   design   and   implementation   will   be   the   subject   of   a   future   paper.   

 
We  are  reaching  out  to  any  community  members  to  encourage  them  to  extend,  replace,               

improve  and  develop  the  entire  model  or  any  model  components.  Multiple  teams  using  multiple               
methods  to  study  a  single  topic  has  proven  powerful  in  other  areas  of  science  and  we  want  to                   
replicate   that   effective   approach   to   rapid   scientific   progress   with   modular   virtual   tissue   modeling.   

 
We  are  specifically  eager  to  collaborate  and  support  groups  modeling  viral  replication,             

cell  death  due  to  viral  replication,  local  cytokine  signalling  effects  and  systemic  immune              
response.  We  are  also  eager  to  help  experimental  and  drug  discovery  and  therapy  development               
teams  adapt  and  refine  this  base  model  for  their  specific  applications  and  to  work  with  groups                 
with  relevant  experimental  validation  data  for  the  integrated  model  and  model  components.  We              
would  also  be  happy  to  discuss  approaches  to  integrating  this  model  framework  as  a               
component  of  teams  developing  whole  body  and  population  level  models.  Many  submodels  and              
model  parametrization  may  be  appropriate  for  replacement  with  AI  surrogates.  Finally,  we  are              
eager  to  work  with  groups  who  want  to  replicate  these  results  using  different  quantitative  and                
computational  methodologies  or  develop  improved  approaches  to  conceptual  and  quantitative           
model   specification.  

Models   and   Methods  
Here  we  model  multiscale  cell-cell  transport  interactions  in  a  local  infected  population  of              

cells.  We  generalize  these  mechanisms  by  representing  transport  of  viral  particles  as  a  diffusive               
chemical  field  in  the  extracellular  environment.  Viral  transport  and  internalization  of  viral             
particles  is  the  necessary  first  step  of  our  viral  infection  model.  In  our  model,  we  approximate                 
these  discrete  processes  using  a  continuous  kinetics  approach,  determined  by  association  and             
dissociation  constants,  the  number  of  available  cell  surface  receptors  and  the  amount  of  viral               
particles  in  the  extracellular  environment.Therefore,  in  our  model  we  use  the  relevant  aspects  of               
transport  on  the  thin  layer  above  the  apical  surface  of  epithelial  cells  as  the  initial  site  of  viral                   
transport  and  attachment  to  represent  an  early  local  respiratory  tissue  infection.  Where  the              
infection  of  susceptible  epithelial  cells  occurs  when  the  diffusive  viral  field  comes  in  contact  with                
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the  cell  surface.  In  our  model,  we  represent  the  complexity  of  viral  replication  by  defining  4                 
broad  stages:  unpacking,  replication,  translation  and  assembly.  Therefore,  in  our  model  the             
kinetics  of  viral  replication  determine  the  release  of  new  viral  particles  to  the  extracellular               
environment   that   contribute   to   the   further   spreading   of   the   virus   in   host   tissue.  
 

For  virally-induced  apoptotic  processes  in  our  model,  each  cell  is  given  a  probability  of               
dying  associated  with  the  number  of  assembled  viral  particles  inside  the  cell.  Cytokines  were               
chosen  to  represent  the  larger  group  of  small  molecule  signals  that  include  chemokines,              
interferons,  and  RNAi.  For  the  purpose  of  this  early  infection  model,  we  functionally  represented               
the  complexity  of  immune  signaling  by  using  a  single  chemical  field  diffusing  in  the  extracellular                
environment.  The  extracellular  field  can  produce  local  immune  effects  such  as  activation  of              
immune  cells  after  immune  cells  are  exposed  to  a  cytokine  signal  for  a  period  of  time.  The                  
extracellular  field  can  also  produce  long  range  immune  effects,  by  correlating  the  concentration              
of  cytokines  in  tissue  to  the  strength  of  signal  at  the  immune  cell  recruiting  sites.  We                 
represented  the  transport  of  cytokines  through  the  lymphatic  system  and  bloodstream  by             
introducing  delay  terms  in  the  appearance  of  immune  cells  at  the  infection  site.  These  delay                
terms  may  also  correlate  with  the  variation  in  response  time  between  host  immune  cells  and                
programmed  cell  death.  Cell  death  also  occurs  in  our  model  due  to  various  mechanisms               
associated   with   host   immune   response.   

Conceptual   Model:   Biological   Hypotheses   and   Assumptions  

Epithelial   Cell   Level  
At  the  epithelial  cell  level,  the  model  accounts  for  binding  and  endocytosis  of  viral               

particles,  intracellular  replication  and  exocytosis  to  the  extracellular  environment,  as  well  as  for              
induced   apoptosis   from   viral   replication   associated   damage.   
 
E1  -  Viral  internalization :  model  of  extracellular  virus  binding  to  epithelial  cell  receptors,              
endocytosis  and  release  of  viral  genetic  material  into  the  cytoplasm.  Internalization  of  viral              
particles  involves  binding  of  the  viral  spike  protein  to  target  cell  surface  receptors,  truncation  by                
surface  proteins  and  receptor-mediated  endocytosis  or  fusion  with  the  host  plasma  membrane.             
We  assume  the  dynamics  of  internalization  can  be  captured  by  focusing  on  the  dynamics  of                
virus-surface  receptor  binding,  determined  by  the  densities  of  extracellular  virus  and  target             
surface  receptors,  and  the  binding  affinity  between  them  ( T1-E1 ).  Internalized,  viral  particles             
initiate   the   viral   replication   process   ( E1-E2 ).   
 
E2  -  Viral  replication :  model  of  viral  replication  cycle  inside  the  host  cell.  Single  stranded                
positive  RNA  viruses  can  initiate  replication  after  unpacking  of  viral  genetic  material  and              
proteins  into  the  cytosol.  The  viral  RNA-dependent  RNA  polymerase  transcribes  a  negative             
RNA  strand  from  the  positive  RNA  strand.  This  negative  strand  is  used  as  a  template  to  produce                  
more  positive  RNA  strands  and  smaller  positive  strand  subgenomic  sequences.  Subgenomic            
sequences  are  then  translated  to  produce  viral  proteins.  Positive  RNA  strands  and  viral  proteins               
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are  transported  to  the  ER  where  they  are  packed  for  release.  We  assume  the  viral  replication                 
cycle  can  be  modeled  by  defining  four  replication  stages:  unpacking,  replicating,  translating  and              
assembling.  
 

Internalized  viral  particles  are  disassembled  at  the  unpacking  stage  ( E1-E2). Viral            
replication  hijacks  some  of  the  host  metabolic  pathways  and  is  limited  by  the  availability  of                
resources  in  the  host  cell.  We  assume  we  can  model  the  rate  limiting  effect  of  resource                 
availability  as  regulation  at  the  replicating  step.  After  replication,  newly  synthesized  viral  genetic              
material  is  translated  into  new  capsid  protein  and  assembled  into  new  viral  particles.  These               
newly   assembled   viral   particles   initiate   the   viral   release   process   ( E2-E3 ).  
 
E3  -  Viral  release :  model  of  intracellular  transport  of  newly  assembled  virions  and  exocytosis               
into  the  extracellular  environment.  After  assembly  inside  the  host,  newly  packed  virions  are              
transported  to  the  ER  where  they  are  packed  into  vesicles  and  transported  to  the  cell  membrane                 
for  release  into  the  extracellular  environment  ( E2-E3 ).  We  assume  that  no  regulation  occurs              
after  assembling  of  new  virions  particles  and  that  exocytosis  into  the  extracellular  environment              
can   be   modeled   as   a   single-step   process   ( E3-T1 ).  
 
E4  -  Induced  cell  death: model  of  induced  apoptosis  due  to  viral  infection.  Production  of  viral                 
proteins  interfere  with  various  of  the  host  cell’s  metabolic,  regulatory  and  delivery  pathways,              
ultimately  inducing  apoptosis  via  the  caspase  cascade.  Instead  of  modeling  each  cytotoxic             
pathway  individually,  we  model  induction  of  apoptosis  by  linking  cell  death  directly  to  the  viral                
proteins   produced   in   the   viral   replication   cycle   ( E2-E4 ).  

Lymph   Node   Level  
L1  -  Immune  cell  recruitment:  model  of  immune  cell  recruitment  and  infiltration  into  the  tissue                
by  signaling  molecules  produced  in  response  to  viral  replication  on  infected  cells.  Infected  cells               
secrete  signaling  molecules  to  the  extracellular  environment  to  alert  resident  immune  cells  and              
to  recruit  new  immune  cells  at  distant  lymph  nodes  and  bone  marrow.  We  model  long  distance                 
signaling  by  assuming  that  cytokine  molecules  in  the  extracellular  environment  exfiltrate  the             
infection  site  and  are  transported  to  lymphatic  nodes  to  initiate  immune  cell  maturation  ( T2-L1 ).               
Recruited   immune   cells   are   then   transported   and   infiltrate   the   infection   site   ( L1-Immune   Cell ).  

Immune   Cell   Level  
At  the  immune  cell  level,  the  model  accounts  for  activation  and  chemotaxis  of  immune               

cells  due  to  cytokine  signaling  and  the  cytotoxic  effects  of  immune  cells  on  infected  epithelial                
cells   due   to   antigen   recognition   or   oxidative   agents.   
 
I1   -   Immune   cell   activation :   model   of   immune   cells   maturation   due   to   cytokine   signaling.   
Immune  cells  mature  at  the  recruitment  site  before  being  transported  to  the  infection  site.  We                
assume  however  that  upon  infiltration,  immune  cells  need  to  be  exposed  to  local  cytokine               
signals  before  exhibiting  active  immune  cell  behavior  ( T2-I1 ).  Once  activated,  immune  cells             
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amplify  immune  signaling  by  releasing  cytokine  molecules  into  the  extracellular  environment            
( I1-T2 ).  
 
I2  -  Immune  cell  chemotaxis :  model  of  immune  cell  local  recognition  and  motility  towards               
infection  sites.  We  assume  that  upon  activation  ( I1-I2 ),  immune  cells  move  preferentially             
towards   higher   concentrations   of   the   local   tissue   cytokine   signal   ( T2-I2 ).  
 
I3  -  Immune  cell  direct  cytotoxicity  and  bystander  effect :  model  of  immune  cell  cytotoxicity               
by  recognition  of  antigen-presenting  surface  complexes.  Immune  cells  identify  target  cells  by             
recognizing  antigens  presented  at  the  cell  surface  as  indicators  of  viral  infection.  Upon              
recognition,  immune  cells  induce  the  caspase  cascade  resulting  in  apoptosis  of  the  target  cell.               
We  model  direct  immune  cytotoxicity  by  assuming  that  immune  cells  move  towards  infected              
cells   ( I2-I3 )   and   trigger   cell   death   of   infected   cells   upon   contact   ( I3-E4 ).   
 
I4  -  Immune  cell  oxidative  cytotoxicity :  model  of  immune  cell  cytotoxicity  by  recognition  of               
high  levels  of  diffusive  cytokines  in  their  local  environment.  Immune  cells  release  an  oxidative               
agent  into  the  environment  upon  sensing  high  local  levels  of  diffusive  cytokine,  which  in  turn                
indiscriminately   kills   epithelial   cells   of   all   types.   

Extracellular   Environment   Level  
At  the  tissue  level,  the  model  accounts  for  the  extracellular  transport  of  viral  particles,               

cytokine   signaling   molecules,   and   an   oxidative   burst   agent.   
 
T1  -  Viral  transport :  model  of  diffusion  and  spreading  of  viral  particles  in  the  extracellular                
environment.  Viral  particles  are  transported  by  different  mechanisms  (ciliated  active  transport            
diffusion)  and  mediums  (air,  mucus)  at  different  physiological  locations  and  through  different             
types  of  tissue  (airway,  nasopharyngeal  track,  lung).  We  assume  that  we  can  generalize  these               
mechanisms  by  representing  transport  of  viral  particles  as  a  diffusive  chemical  field  in  the               
extracellular  environment.  We  model  transport  on  a  thin  layer  above  the  apical  surfaces  of               
epithelial  cells  where  viral  particles  are  deposited  and  transported.  Infection  of  susceptible  cells              
occurs  when  the  diffusive  viral  field  comes  into  contact  with  the  cell  surface  ( T1-E1 ).  Infected                
cells  release  viral  particles  to  the  extracellular  environment  as  a  result  of  the  viral  replication                
cycle   ( E3-T1 ).   
 
T2  -  Cytokine  transport :  model  of  diffusion  of  small  immune  signaling  molecules  in  the               
extracellular  environment.  Immune  response  involves  multiple  signaling  molecules  acting  upon           
different  signaling  pathways,  but  we  assume  that  the  complexity  of  immune  signaling  can  be               
functionally  represented  using  a  single  chemical  field  diffusing  in  the  extracellular  environment.             
Once  infected,  epithelial  cells  secrete  signaling  molecules  to  alert  the  immune  system  ( E3-T2 ).              
Cytokine  signaling  has  both  local  and  distant  effects.  Locally,  exposure  to  cytokine  signaling              
results  in  activation  of  newly  recruited  immune  cells  occurs  ( T2-I1 ).  Upon  activation,  immune              
cells  further  infiltrate  the  tissue  towards  infection  sites  guided  by  the  cytokine  molecules  ( T2-I2 ).               
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Lastly,  active  immune  cells  amplify  the  immune  signaling  by  further  secreting  cytokines  into  the               
extracellular  environment  ( I1-T2 ).  We  model  long  range  effects  by  assuming  cytokine  exfiltrate             
tissue  and  is  transported  to  immune  recruitment  sites  ( T2-L1 ).  We  assume  that  the  local               
strength  of  the  cytokine  signal  tissue  correlates  to  the  strength  of  the  signal  at  the  immune                 
recruiting  sites.  We  model  transport  of  cytokines  through  the  lymphatic  system  and  bloodstream              
with   delays   to   account   for   exfiltration   and   recruitment.  
 
T3  -  Oxidative  Burst  Agent: model  of  diffusion  of  a  general  oxidative  agent.  One  of  the                 
cytotoxic  mechanisms  of  immune  cells  is  the  release  of  different  oxidative  agents,  reactive              
oxygen  species  (ROS)  like  H 2 O 2  and  nitric  oxide  (NO).  The  mechanism  of  action  of  such  agents                 
vary  depending  on  the  agent  but  we  assume  we  can  generalize  such  effects  by  modeling  a                 
single  oxidative  diffusing  field  in  the  extracellular  environment.  The  oxidative  agent  is  secreted              
by  active  immune  cells  after  persistent  exposure  to  cytokine  signals  ( I4-T3 ).  We  assume  that  the                
range  of  action  of  the  oxidative  agent  is  short.  Cell  death  is  induced  in  epithelial  cells  when  they                   
come   into   contact   with   the   oxidative   agent   ( T3-E4 ).   
 
 

 
Figure  6: Conceptual  model.  Schematic  representation  of  the  model  objects,  compartments,  processes  and              
interactions.  Epithelial  and  immune  cells  refer  to  the  two  agents  in  the  model.  Extracellular  environment  and  lymph                  
node  refer  to  compartments  where  interactions  between  agents  and  fields  take  place.  Each  agent  has  associated                 
submodels  that  dictate  their  behaviors.  Epithelial  cells  have  viral  internalization  (E1),  viral  replication  (E2),  cell  death                 
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(E4)  and  viral  release  (E4)  submodels.  Immune  cells  have  activation  (I1),  chemotaxis  (I2),  contact  cytotoxicity  (I3)                 
and  oxidative  cytotoxicity  (I4)  submodules.  Fields  describe  transport  of  material  in  the  extracellular  environment  and                
to  the  lymph  nodes.  Three  fields  characterize  the  model:  viral  field  (T1),  cytokine  field  (T2)  and  oxidative  agen  field                    
(T3).   At   the   lymph   node   compartment,   transport   of   cytokines   feeds   into   an   immune   recruitment   submodel   (L1).   

Quantitative   Model   and   Implementation  
For  our  model  construction  and  integration  we  use  the  open-source  multicell  modeling             

environment  CompuCell3D  ( www.compucell3d.org )  which  allows  rapid  and  compact         
specification  of  cells,  diffusing  fields  and  biochemical  networks  using  Python  and  the  Antimony              
language [73,74] .  Compucell3D  is  specifically  designed  to  separate  model  specification           
(conceptual  and  quantitative  models)  from  the  details  of  model  implementation  as  a  simulation              
and  to  make  simulation  specification  accessible  to  biologists  and  others  not  specialized  in              
software  development.  In  this  work  we  have  specifically  designed  the  Python  modules  and  their               
cross-scale  integration  to  have  clear  APIs,  allowing  the  model  elements  to  be  rapidly  swapped               
out  by  collaborating  developers.  CompuCell3D  runs  on  Windows,  Mac  and  Linux  platforms             
without  change  of  model  specification.  Recent  versions  allow  cluster  execution  for  parameter             
exploration.  

Cellular   Potts   Model   (CPM)  

Cell   Types  
Cells  are  divided  into  two  classes‒epithelial  and  immune‒and  assigned  a  phenotype  by             

which  various  submodels  behave.  These  phenotypes  can  change  according  to  outcomes  of             
various  submodels,  and  a  submodel  specifying  such  an  event  describes  both  the  initial  and  final                
phenotypes  of  the  transition,  as  well  as  the  conditions  of  its  occurrence.  As  such,  a  cell                 
phenotype  in  the  model  framework  is  not  a  phenotype  in  the  biological  sense  ( e.g. , epithelial                
cell),  but  rather  serves  as  an  identifier  for  the  various  states  that  a  particular  cell  class  can  take                   
( e.g ., dead  epithelial  cell)  due  to  events  defined  by  the  submodels.  Epithelial  cells  can  adopt                
one  of  three  different  phenotypes:  uninfected,  infected  and  dead.  The  specific  behaviors  of  each               
cell  phenotype  is  defined  per  submodel  as  relevant  to  their  purpose.  When  a  cell  changes  to  a                  
dead   type,   all   epithelial   submodels   are   disabled   the   cell   is   generally   inactive.   

Cellular   Dynamics  
Cellular  spatial  dynamics  is  modeled  using  the  Cellular  Potts  model  (a.k.a.,  the  CPM,              

Glazier-Graner-Hogeweg  model),  which  represents  generalized  cells  and  medium  as  occupying           
a  set  of  sites  in  a  lattice [75] .  Cell  random  motility  is  modeled  as  the  stochastic  exchanging  of                   
sites  at  the  interface  of  cells  and  medium  so  to  minimize  the  system’s  effective  energy  that                 ℋ   
governs   various   behaviors,   

  (1)  (v )  ℋ = ∑
 

σ
λvolume (σ) − V (τ )(σ) 2 +∑

 

x
∑
 

x ∈N (x)′
1( − δσ(x), σ(x )′ ) J (τ τ )(σ )(x) ,  (σ )(x )′ +ℋchemotaxis  
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Here  is  the  identification  of  a  cell  and  is  the  type  of  cell .  and  are  the  σ         τ (σ)       σ  v (σ)   V (σ)    
current  and  target  volumes  of  cell ,  respectively,  and  is  a  volume  constraint  coefficient.       σ    λvolume       

 is  the  neighborhood  of  site ,  is  the  Kronecker-delta,  and  is  the  contact N (x)       x  δi, j       J (τ , τ ) ′     
effective  energy  between  types  and .  The  final  term  models  directed  motility  by     τ    τ ′      ℋchemotaxis      
chemotaxis,  and  is  prescribed  by  submodels.  For  every  spin  flip  attempt,  a  site  in  the  lattice  is              x      
randomly  selected,  as  is  a  site  in  its  neighborhood.  The  change  in  the  effective  system        x′       ℋ  Δ      
energy  is  calculated  due  to  the  identification  at  being  changed  ( i.e. ,  “flipped”)  to  the   ℋ         x        
identification  at  the  neighborhood  site ,  and  the  spin  flip  occurs  with  a  probability  according  to       x′            
a   Boltzmann   acceptance   function,   
 

  (2)  Pr (σ )(x) → σ (x )′ = e
max 0, −

 
{ ℋ*

Δℋ}  
 
Here  the  intrinsic  random  motility  controls  the  stochasticity  of  spin  flips,  and  spin  flips  that       ℋ*            
reduce  the  effective  system  energy  are  always  accepted.  The  unit  of  simulation  time  is  the                
Monte  Carlo  step  (MCS),  which  demarcates  the  accomplishment  of  having  considered  a             
number   of   spin   flips   equal   to   the   number   of   lattice   sites.   

Epithelial   Submodels  

Viral   Internalization  
Internalization  is  a  discrete  process  by  which  a  viral  particle  binds  to  one  or  more  cell                 

receptors.  To  capture  the  stochasticity  associated  with  discrete  binding  events,  we  assign  each              
uninfected  and  infected  cells  a  probability  of  absorbing  diffusive  viral  particles  from  the              
extracellular  viral  field.  The  uptake  probability for  each  cell  occurs  according       (Uptake(cell) )  Pr > 0      
to  a  Hill  equation  of  the  total  amount  of  diffusive  viral  particles  in  the  domain  of  the  cell ,                   (cell)cvir  
the   number   of   unbound   cell   surface   receptors     and   the   binding   affinity   between   them. R(cell)  S   

 

  (3) (Uptake ) ,   VPr > 0 =  (c (cell))vir
hupt

(c (cell)) +Vvir
hupt

upt
hupt

 upt =
R ko of f

2k V ol(cell)SR(cell)on
 

 
Here  is  a  Hill  coefficient,  is  the  initial  number  of  unbound  cell  receptors,  is  the  hupt      Ro           kon    
association  constant  between  virus  and  cell  surface  receptors,  is  the  dissociation  constant          kof f      
and  is  the  cell  volume.  At  each  simulation  time  step  the  uptake  probability  is  evaluated  ol(cell)V                
against  a  uniformly  distributed  random  variable.  When  uptake  occurs,  the  uptake  rate  is              
proportional  to  the  local  amount  of  the  viral  field,  and  the  probability  of  uptake  is  used  to                  
describe   the   efficiency   by   which   uptake   occurs,   
 

  (4) ptake (Uptake )c  U =  Pr > 0 vir (cell) ,  
 

  (5) ptake.  dt
dSR(cell) =− U  
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The  amount  absorbed  by  each  cell  is  uniformly  subtracted  from  the  viral  field  over  the  cell’s                 
domain  and  the  number  of  unbound  receptors  and  passed  to  the  cell’s  instance  of  the  viral                 
replication  model  according  to  conservation  of  species.  We  assumed  that  epithelial  cells             
continue  uptaking  viral  particles  from  the  environment  after  infection  until  cell  receptors  are              
depleted.   

Viral   Replication   
Our  very  simple  proof-of-concept  viral  replication  model  was  inspired  by  discussions  with             

Paul  Macklin  and  has  a  form  similar  to  that  published  by  Macklin  but  differs  in  equations  and                  
parameters [72] .  It  represents  the  replication  of  a  generic  virus  and  does  not  include  several                
aspects  of  viral  replication  specific  to  coronaviruses  and  their  timescales.  The  system  of              
ordinary  differential  equations  modeling  the  viral  replication  process  is  assigned  as  an             
independent  copy  to  each  uninfected  and  infected  cell.  The  model  contains  four  variables              
representing  different  states  of  the  viral  replication  process:  unpacking ,  replicating ,          U   R  
packing   ,   and   assembly   of   new   virion   capsids   . P A   
 

  (6) ptake U   dt
dU = U − ru  

 

  (7) U  R  Rdt
dR = ru + rmax

rhalf
 

R +rhalf
− rt  

 
  (8) R P  dt

dP = rt − rp  
 

  (9) P ecretion  dt
dA = rp − S  

 
Here is  the  unpacking  rate, is  the  maximum  replication  rate, is  the  translation  rate  and   ru      rmax       rt      

is  the  packing  rate.  The  regulation  of  replication  is  represented  by  a  Michaelis-Menten  rp              

function  of  the  amount  of  replicating  viral  material ,  where  is  the  amount  of at  which        
rhalf

 

R +rhalf
   rhalf      R   

the  replicating  rate  is .  The  viral  replication  model  is  specified  as  a  readily  sharable  Antimony    2
rmax             

string  that  can  be  implemented  as  a  standalone  using  the  Tellurium  package.  The  number  of                
newly   assembled   virion   capsids   is   passed   to   the   cell’s   instance   of   the   viral   release   model.   
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Figure  7: Interactions  in  the  Viral  Replication  Model .  Schematic  representation  of  inputs,  outputs  and  interactions                
between  stages  of  the  viral  replication  model.  Extracellular  viral  particles  are  internalized  by  the  viral  internalization                 
model  and  initiate  the  viral  replication  model.  The  main  stages  of  the  viral  replication  model  are:  unpacking,                  
replicating,  packing  and  assembled.  Regulation  occurs  at  the  replicating  stage.  The  output  of  the  viral  replication                 
model  is  passed  to  the  viral  secretion  model,  where  newly  assembled  viral  particles  are  released  to  the  extracellular                   
environment.   

Viral   Release   
Infected-secreting  cells  secrete  diffusive  viral  particles  into  the  extracellular  viral  field.            

The  total  amount  released  is  proportional  to  the  state  variable  for  assembled  virions  from  the                
viral   replication   model,   
 

  (10) ecretion A.  S = rs  
 

Here  is  the  secretion  rate  of  viral  particles.  The  amount  released  by  each  cell  is  subtracted   rs                 
from  the  cell’s  state  variable  for  assembled  virions  and  passed  to  the  source  term  of  the                 
extracellular   viral   field   according   to   conservation   of   species.   

Virally   Induced   Apoptosis  
Each  infected-secreting  cell  can  initiate  apoptosis  once  per  simulation  step  (along  with             

other  death  methods)  as  a  stochastic  function  of  the  state  variable  for  assembled  virions  from                
the  viral  replication  model.  Infected-secreting  cells  change  cell  type  to  dying  cell  and  their               
instances  of  the  viral  internalization,  replication  and  release  models  are  disabled.  The  probability              
of  virus-induced  apoptosis  per  unit  time  is  a  Hill  equation  of  the  current  load  of  assembled  virus                  
(in  future  versions  could  also  depend  on  a  health  state  of  cell,  on  the  total  number  of  virus                   
produced   and   on   the   current   rate   of   production   of   virus),   
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  (11) ,Pr (Type ying∣Type nfected Secreting)(cell) → D (cell) = I = (A(cell))hapo

(A(cell)) +Vhapo
apo

hapo  

 
where  is  the  number  of  assembled  virions,  is  a  Hill  coefficient  and  is  the  (cell)A        hapo      V apo    
amount   of   assembled   virions   at   which   the   apoptosis   probability   is   0.5.   
 

 
Figure  8: State  diagram  and  interactions  of  epithelial  cells .  Epithelial  cells  can  adopt  one  of  four  cell  types:                   
uninfected,  infected,  infected  secreting  and  dead.  Uninfected  cells  transition  to  infected  cells  when  the  viral  uptake                 
model  internalizes  viruses  from  the  extracellular  environment.  Early  infected  cells  continue  uptaking  virus  from  the                
extracellular  environment  and  transition  to  infected  secreting  cells  when  the  viral  replication  model  produces  sufficient                
newly  assembled  virions.  Infected  secreting  cells  secrete  viruses  according  to  the  viral  secretion  submodel  and                
secrete  cytokines  directly  into  the  extracellular  environment.  Infected  secreting  cells  can  transition  to  dead  cells  if  the                  
conditions   of   the   viral   cell   death   model   are   met.   

Immune   Submodels  

Immune   Cell   Recruitment  
The  total  immune  cell  population  is  governed  by  an  ordinary  differential  equation  of  a               

state  variable  that  represents  immune  response  due  to  local  conditions  and  long-distance    S            
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signaling.  Our  convention  is  that  when ,  immune  cells  are  recruited  to  the  simulation        S > 0         
domain;  likewise,  immune  cells  are  removed  from  the  simulation  domain  when .  We             S < 0   
accomplish  this  by  imposing  probability  functions  describing  the  likelihood  of  immune  cell             
seeding   and   removal,   
 

  (12) rf   S  Pr (add immune cell) = e (α S)immune ,  > 0  
  (13) rf  S  Pr (remove immune cell) = e ( S)− αimmune ,  < 0  

 
Here  the  coefficient  controls  the  sensitivity  of  immune  cell  addition  and  removal  to  the    αimmune             
state  variable .  The  dynamics  of  are  cast  such  that,  in  a  homeostatic  condition,  a  typical    S      S            
number  of  immune  cells  can  be  found  in  the  simulation  domain,  and  production  of  cytokine  in                 
the  simulation  domain  results  in  additional  recruitment  via  long-distance  signaling  ( i.e. ,  with             
some  delay).  We  accomplish  this  by  using  the  feedback  mechanisms  of  the  total  number  of                
immune  cells  in  the  simulation  domain  and  a  fraction  of  the  total  amount  of  decayed   N immune               
cytokine .  Here  is  the  total  amount  of  decayed  cytokine  in  the  simulation  domain  and  δαsig   δ              

 models  signaling  by  transmission  of  cytokine  to  some  far-away  source  of  immune  0 < αsig < 1              
cells.   With   these   mechanisms,   we   write   the   rate   of     as   such,  S   
 

  (14) dt
dS = N α δ S.  βadd − βsub immune + βdelay sig − βdecay  

 
Here  and  control  the  number  of  immune  cells  in  the  simulation  domain  under   βadd    βsub             
homeostatic  conditions,  controls  the  delay  between  transmission  of  the  cytokine  and    βdelay           
immune   response,   and     controls   the   return   of     to   an   unperturbed   state   ( i.e. ,   ).  βdecay  S  S = 0  
At  each  simulation  step  the  seeding  probability  is  evaluated  against  a  uniformly  distributed              
random  variable.  To  determine  the  seeding  location,  the  simulation  space  is  randomly  sampled,              
and  immune  cells  are  seeded  at  the  unoccupied  location  with  the  highest  amount  of  the  viral                 
field.  If  no  location  is  unoccupied,  then  the  immune  cell  is  not  seeded.  The  removal  probability  is                  
evaluated  against  a  uniformly  distributed  random  variable  for  each  immune  cell  at  each              
simulation   step.   Immune   cells   are   removed   by   setting   their   volume   constraint   to   zero.   

Immune   Cell   Chemotaxis  
Activated  immune  cells  experience  a  motile  force  as  a  response  to  a  signaling  field.  The                

immune  cells  chemotax  on  the  chemical  field  representing  cytokine  signaling  molecules.  The             
chemotactic  function  measures  the  local  gradient  of  the  cytokine  field  and  computes  the              
effective  energy  associated  with  the  gradient  according  to  a  prescribed  chemotactic    ℋchemotaxis           
sensitivity  parameter  and  calculated  chemotactic  force .  The  contribution  of   λchemotaxis      F chemotaxis     

 to  the  change  in  the  system  total  effective  energy  is  calculated  using  when  ℋchemotaxis              F chemotaxis   
considering  spin  flips.  The  chemotactic  force  is  saturated  by  normalizing  the  chemotactic             
sensitivity   parameter   by   the   local   concentration   , (cell)cvir  
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  (15) ∇c .F chemotaxis = λchemotaxis
1+c (cell)vir cyt  

 

Immune   Cell   Activation  
Immune  cells  have  an  associated  boolean  active  state.  All  cells  are  initialized  as  inactive               

(Active=  False).  The  activated  state  becomes  true  with  a  probability  according  to  a  Hill  equation                
of   the   total   cytokine   bound   to   the   cell   , Bcyt (immune cell, t)   

Pr (activated rue∣activated alse)(immune cell, t) = T (immune cell, t t) − Δ = F =
B (immune cell, t)( cyt )hact

B (immune cell, t) +V( cyt )hact act
hact

 

(16)  
 
After  one  hour,  an  activated  immune  cell  is  deactivated,  in  which  case  evaluations  of  activation                
recommence.  The  immune  cells  “forget”  a  percentage  the  cytokine  they  have  bound  each  time               
step,  
 

  (17) B  Bcyt (immune cell, t) = ρcyt cyt (immune cell, t Δt) −  + σcyt (immune cell, t) .  

Immune   Cell   Direct   Cytotoxicity   and   Bystander   Effect  
Immune  cells  kill  infected  cells  by  direct  contact.  At  each  simulation  step,  neighbors  of               

infected  cells  are  evaluated.  Apoptosis  is  triggered  in  an  infected  cell  if  it  has  an  immune  cell  as                   
one  of  its  neighbors,  in  which  case  the  cell  changes  type  of  dead.  When  an  infected  cell  is  killed                    
by  direct  cytotoxicity,  each  of  its  first  order  neighbors  is  evaluated  for  bystander  effect               
cytotoxicity.   The   neighbors   have   a   probability   of   dying   from   bystander   effect:  
 

  (18)  Pr (Type ying ∣ Neighbor irect Cytotoxicity True )(cell) → D (cell)D =  = kbystander  
 
Where  the  is  the  probability  of  a  neighbor  cell  dying  from  bystander  effect  as  a  result  of    kbystander                 
contact   direct   killing   of   an   infected   cell.  

Immune   Cell   Oxidative   Cytotoxicity  
Immune  cells  when  detecting  a  high  cytokine  concentration  will  release  a  short-range,             

diffusive  oxidative  agent.  The  oxidative  agent  kills  any  epithelial  cell  when  its  concentration              
inside   the   cell   reaches   a   minimum   concentration   for   death,   . τ oxi

death   
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Figure  9: State  diagram  and  interactions  of  epithelial  cells .  Immune  cells  can  adopt  two  different  generalized                
states:  inactive  and  active.  Inactive  immune  cells  are  recruited  by  the  cytokine  levels  according  to  the  immune                  
recruitment  submodel.  Transition  from  inactive  to  active  immune  cells  is  determined  by  the  immune  activation                
submodel  when  cells  are  exposed  to  cytokine.  Active  immune  cells  amplify  the  cytokine  signal  by  secreting  cytokines                  
to  the  extracellular  environment.  Active  immune  cells  induce  death  of  epithelial  cells  by  direct  cytotoxicity  when                 
coming  into  contact  with  infected  cells,  bystander  effect  by  killing  neighbors  of  infected  cells  and  by  releasing                  
cytotoxic   oxidative   agents   into   the   extracellular   environment.   

Mass   Transport   Submodels  

Viral   Transport  
The  change  in  concentration  of  the  viral  field is  calculated  at  each  location  in  the         cvir        

simulation  domain  by  solving  a  reaction-diffusion  equation  using  the  following  partial  differential             
equation,   
 

  (19) Δc c (x)∂t
∂c (x)vir = Dvir vir − γvir vir + 1

V ol(Cell(x)) (Secretion ptake )(Cell )(x) − U (Cell )(x) .  
 
Transport  parameters  such  as  the  diffusion  constant  and  decay  rate  are  estimated        Dvir     γvir    
from  the  literature.  Conversion  factors  are  used  to  translate  experimental  parameter  values  to              
internal  simulation  parameters.  Uptake  and  secretion  by  a  cell  at  each  location  are  determined               
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using  the  viral  internalization  and  the  viral  secretion  submodels,  and  are  uniformly  applied  over               
all   sites   of   the   domain   of   the   cell.   

Cytokine   Transport  
The  change  in  concentration  of  the  cytokine  field  by  solving  a  reaction-diffusion         ccyt      

equation   of   the   following   general   form,   
 

  (20) Δc c∂t
∂ccyt = Dcyt cyt − γcyt cyt + scyt  

 
The  decay  term  represents  cytokine  leaving  the  simulated  domain  ( e.g. ,  in  immune    cγcyt cyt           
recruitment).  Infected  cells  secrete  cytokine  with  a  maximum  rate ,  immune  cells          σcyt (infected)    
with  an  activated  state  secrete  cytokine  with  a  rate  maximum ,  and  immune           σcyt (immune activate)    
cells  (irrespective  of  their  activated  state)  consume  cytokine  with  a  rate  to  model            ωcyt (immune)    
the  binding  of  cytokine.  The  amount  of  cytokine  released  is  mediated  by  a  Hill  equation.  The                 
input  for  the  hill  equation  for  the  infected  cells  is  the  internal  viral  load  while  for  the  activated                   
immune   cells   it   is   the   cytokine   field   being   sensed,  
 

,   ,   (21)  σ(type) H(input; ζ)  Scyt =   (x; h, ζ)  H   = x2

x + ζ2 2  

 
Here     is   the   dissociation   coefficient. ζ   

Oxidative   Agent   Transport  
The  oxidative  agent  field  secreted  by  immune  cells  with  an  activated  state  diffuses              

according   to   the   transport   equation,   
 

  (22) Δc c .∂t
∂coxi = Doxi oxi − γoxi oxi + soxi  

 
Bursts  of  oxidative  agent  are  implemented  as  a  source  term  for  one  time  step  at  a  rate  of                   

,  which  is  uniformly  mapped  onto  the  source  term .  An  oxidative (immune activated oxi)  σoxi −           soxi    
burst  occurs  in  immune  cells  with  an  activated  state  when  the  cytokine  in  the  immune  cell’s                 
domain   exceeds   a   threshold   . τ oxi

sec  

Initial   and   Boundary   Conditions  
All  simulations  consisted  of  a  domain  of  dimension  90  x  90  x  2  lattice  sites.  The  initial                  

cell  configuration  consisted  of  a  90  x  90  sheet  of  uninfected  epithelial  cells.  Epithelial  cells  were                 
“frozen”,  in  that  they  were  not  permitted  to  translocate,  leaving  the  remaining  90  x  90  subdomain                 
for  occupancy  by  recruited  immune  cells.  For  cellular  dynamics  and  mass  transport,  periodic              
boundary  conditions  were  applied  in  the  plane  of  the  epithelial  sheet,  and  Neumann  conditions               
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were  applied  along  the  direction  orthogonal  to  the  epithelial  sheet.  All  field  solutions  for  the                
diffusive   viral,   cytokine   and   oxidative   agent   fields   were   initialized   as   zero   everywhere.   

 
At  each  first  simulation  step,  the  epithelial  cell  in  the  center  of  the  sheet  was  set  to                  

infected,  and  its  unpacking  state  variable  of  the  viral  replication  model  was  set  to  a  value  of       U             
one.  All  epithelial  cells  were  initialized  with  a  number  of  unbounded  surface  receptors  equal              R  S   
to  the  number  of  initially  unbound  receptors .  All  immune  cells,  when  introduced  to  the        Ro         
simulation  by  recruitment,  were  initialized  not  in  an  activated  state,  and  with  a  boundy  cytokine                
value  ( )  equal  to  zero.  During  transition  of  an  epithelial  cell  to  the  infected  type,  all  state  Bcyt                 
variables  of  the  viral  replication  model  were  initialized  with  a  value  of  zero.  Secretion  of  viral                 
particles   by   epithelial   cells   was   only   permitted   for   Infected-secreting   types.   

Simulation   Specifications  
Model  implementation  and  all  simulations  were  performed  in  CompuCell3D,  which  uses            

a  non-dimensional  lattice  for  CPM-based  cellular  dynamics  and  non-dimensional  explicit  time            
integration  of  reaction-diffusion  field  solutions.  As  such,  a  baseline  parameter  set  was             
constructed  for  all  CPM  parameters  and  submodels  developed  in  this  work  (Table  1).              
Non-dimensionalization  was  performed  on  all  available  model  parameters  in  the  literature  for  a              
lattice  dimension  of  4  μm  per  pixel  along  each  dimension,  at  120  s  per  MCS.  For  remaining                  
model  parameters,  parameter  estimation  was  performed  such  that,  for  the  baseline  set  of              
parameters,  spread  of  infection  occurred  throughout  the  domain  by  approximately  the  end  of  the               
simulation  time.  All  parameter  sets  were  simulated  for  ten  trials,  each  consisting  of  1,000  MCSs.                
Simulation  data  was  collected  at  a  frequency  of  10  MCSs  for  all  simulations,  including  the  total                 
number  of  all  cell  types,  the  total  number  of  activated  immune  cells,  the  total  diffusive  virus  and                  
cytokine,   and   the   value   of   the   immune   response   signal   ( ),  S   
 

Two  parameter  sweeps  were  performed  for  submodel  parameters  of  interest.  In  the  first              
set,  the  virus-receptors  affinity  association  and  immune  response  delay  coefficient       kon        βdelay  
were  varied.  In  the  second  parameter  sweep,  the  replication  rate  was  varied.  For  all            rmax      
variations,  the  baseline  coefficient  was  multiplied  by  a  factor  in  the  set  10 -2 ,  10 -1 ,  10 0 ,  10 1 ,  10 2 .                  
As  such,  the  first  parameter  sweep  consisted  of  25  parameter  sets,  and  the  second  parameter                
sweep   consisted   of   5   parameter   sets,   for   a   total   of   300   total   simulations.   
 

Conversion   Factors  Value  

Simulation   step  120.0   s  

Lattice   width  4.0   μm  

Scale   factor   for   concentration  1×10 -15    pmol  

Simulation   parameters  Value  

Cell   diameter  12.0   μm  
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Replication   rate    rmax  1.0/120.0   s -1  

Translating   rate    rt  1.0/60.0   s -1  

Unpacking   rate    ru  1.0/6.0   s -1  

Packing   rate    rp  1.0/30.0   s -1  

Secretion   rate     rs  1.0/30.0   s -1  

Scale   factor   for   number   of   mRNA   per   infected   cell   RNAm avg  1000   cell -1  

Viral   dissociation   coefficient   rhalf    =   2000 RNA ( )  m avg/ rt
rmax − 1  

Viral   diffusion   coefficient   Dvir  0.1   μm 2 /s  

Viral   diffusion   length   λvir   3   cell   diameters   =   36   μm  

Viral   decay   rate   γvir   λ  Dvir/ 2
vir  

Cytokine   diffusion   coefficient   
  (IL-2   cytokine) Dcyt  

1.6   μm 2 /s   (ECM,   estimated)  

Cytokine   diffusion   length     (IL-2   cytokine) λcyt  100   μm  

Cytokine   decay   rate     (IL-2   cytokine) γcyt  λ  Dcyt/ 2
cyt   

 

Maximum  cytokine  immune  secretion  rate      
(immune activated)σcyt  

(IL-2   cytokine)  

3.5×10 -3    pM/s  

Immune   secretion   midpoint  1   pM  

Cytokine   immune   uptake   rate   (immune activated)ωcyt  
(IL-2   cytokine)  

3.5×10 -4    pM/s  

Maximum   cytokine   infected   cell   secretion   rate   (infected)σcyt  
(IL-2   cytokine)  

10×   =   3.5×10 -2    pM/s (immune activated)σcyt  

Infected   cell   cytokine   secretion   mid-point  0.1   pM  

Immune   cell   cytokine   activation   C50E cyt, act  1   pM  

Immune   cell   equilibrium   bound   cytokine   QE ck    =   134.4 .1 C50  2 × E  

Immune   cell   bound   cytokine   memory   ρcyt    =   0.98   s -1  ω (immune activated) EQ  1 −  cyt / ck  

Immune   cell   activated   time  1   h  

Oxidation   Agent   diffusion   coefficient   Doxi  =   6.4   μm 2 /s  D4 cyt  

Oxidation   Agent   diffusion   length   λoxi  3   cell   diameters   =   36   μm  

Oxidation   Agent   decay   rate   γoxi    =   1.32×10 -4    s -1 λ  Doxi/ 2
oxi   

Immune  cell  oxidation  agent  secretion  rate       
(immune activated  σoxi  

σ (infected) cyt   
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oxi)  −   

Immune   cell     threshold   for   Oxidation   Agent   release   Ccyt τ sec
oxi

  EC5064
10

cyt, act  

Tissue   cell   threshold   for   death   Coxi τ
oxi
death   EC5064

1.5
cyt, act  

Initial   density   of   unbound   cell   surface   receptors    Ro  200   cell -1   

Virus-receptors   association   affinity  kon  1.4×10 5     M -1 s -1  

Virus-Receptors   disassociation   affinity kof f  1.4×10 -4     s -1  

Infection   threshold  1  

Initial   target   volume  9  

Lambda   volume   λvolume  9  

Initial   number   of   immune   cells  0  

Lambda   chemotaxis   λchemotaxis  1  

Intrinsic   Random   Motility    ℋ*   10  

Contact   coefficients     (all   interfaces)  J  10  

Table   1.   Parameter   values   of   baseline   parameter   set.    
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