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1
Kinetics in a Nutshell

1.1 Introduction

Understanding chemical kinetics is at the heart of building biochemical models. This chap-
ter gives a minimal introduction to some of the essential concepts of elementary chemical
kinetics. A fuller account is given in the companion book, ‘Enzyme Kinetics for Systems
Biology’. This chapter may be omitted by those already familiar with this topic.

1.2 Definitions

Reaction kinetics is the study of how fast chemical reactions take place, what factors influ-
ence the rate of reaction, and what mechanisms are responsible.

Stoichiometric Amount

The stoichiometric amount is the number of molecules for a particular reactant or products
takes part in a given reaction reaction. For example:

2AC 3B ! AC 3C

In the above example the stoichiometric amount for reactant A is 2 and for B is 3. The
stoichiometric amount for product A is 1 and for C is 3.

1
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Depicting Reactions

aAC bB C : : :!CpP C qQC : : :

where a; b; : : : ; p; q; : : : are stoichiometric amounts.

Rates of Change

The rate of change is defined as the rate of change in concentration or amount of a desig-
nated molecular species.

Rate of Change D
dS

dt

Stoichiometric coefficients

The stoichiometric coefficient, ci , for a molecular species Aj , is the difference between
the molar amount of species, i – also called the stoichiometric amount – on the product
side and the molar amount of the same species on the reactant side.

ci D Molar Amount of Product �Molar Amount of Reactant

In the reaction, 2A �! B , the molar amount of A on the product side is zero while on the
reactant size it is two. Therefore the stoichiometric coefficient of A is given by 0�2 D �2.
In many cases a particular species will only occur on the reactant or product side but it is
not uncommon to find situations where a species occurs simultaneously as a product and a
reactant. As a result, reactant stoichiometric coefficients tend to be negative while product
stoichiometric coefficients tend to be positive.

Reaction Rates

The reaction rate, often denoted by the symbol v, is measured with respect to a given
molecular species normalized by the species stoichiometric coefficient. This definition
ensures that no matter which molecular species in a reaction is measured, the reaction rate
is uniquely defined for that reaction. More formally, the reaction rate for the given reaction
is:

aAC bB C : : :! pP C qQC : : :

v D
1

ca

dA

dt
D �

1

cb

dB

dt
: : : D

1

cp

dP

dt
D

1

cq

dQ

dt
: : :

where cx are the stoichiometric coefficients. Alternatively, we can express the rate of
change in terms of the reaction rate as:
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dA

dt
D cav (1.1)

1.3 Elementary Mass-Action Kinetics

An elementary reaction is one that cannot be broken down into simpler reactions. Such
reactions will often display simple kinetics called mass-action kinetics. For a reaction of
the form:

aAC bB C : : :!CpP C qQC : : :

the mass-action kinetic rate law is given by:

v D k1A
aBb : : : � k2P

pQq : : :

where k1 and k2 are the forward and reverse rate constants, respectively. In the case of
reaction:

2ADP! ATPC AMP (1.2)

The reversible mass-action rate law would be written as:

v D k1 ADP 2
� k2 ATP AMP

In all mass-action rate laws, the units for the reactant and product terms must be expressed
in concentration. The units for the rate constants, k will depend on the exact form of the rate
law but must be set to ensure that the rate of reaction is expressed in units moles L�1t�1.

1.4 Chemical Equilibrium

In principle, all reactions are reversible, meaning transformations can occur from reactant
to product or product to reactant. The net rate of a reversible reaction is the difference
between the forward and reverse rates. Given a reversible reaction such as:

A
 B

we can observe the concentrations of A and B approach equilibrium (Figure 1.3).

At chemical equilibrium the forward and reverse rates are equal and is described by the
relation:

k1

k2
D
B

A
D Keq (1.3)
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Figure 1.1 Approach to equilibrium for the reaction A 
 B , k1 D 0:6; k2 D

0:4; A.0/ D 1; B.0/ D 0. Progress curves calculated from the solution to the differ-
ential equation dA=dt D k2B � k1A.

This ratio has special significance and is called the equilibrium constant, denoted byKeq .
The equilibrium constant is also related to the ratio of the rate constants, k1=k2. For a
general reversible reaction such as:

aAC bB C : : :
 pP C qQC : : :

and using arguments similar to those described above, the ratio of the rate constants can be
easily shown to be:

Keq D
P pQq : : :

AaBb : : :
D
k1

k2
(1.4)

where the exponents are the stoichiometric amounts for each species.

For a bimolecular reaction such as:

HA 
 HC A

chemists and biochemists will often distinguish between two kinds of equilibrium constants
called association and dissociation constants. Thus the equilibrium constant for the above
bimolecular reaction is often called the dissociation constant, Kd :

Kd D
H � A

HA
to indicate the degree that the complex is dissociated into its component molecules at equi-
librium. The association constant, Ka, though less commonly used, describes the equi-
librium constant for the reverse process HC A 
 HA, that is the formation of a complex
from component molecules:

Ka D
HA

H � A
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It should be evident that:

Kd D
1

Ka
(1.5)

The equilibrium constant is also related to the standard free energy change,DeltaGo, such
that:

�Go D �RT lnKeq
where R is the gas constant, and T the temperature. Rearranged we can also see that:

Keq D e
��Go=RT (1.6)

1.5 Mass-action and Disequilibrium Ratio

Although in closed systems reactions tend to equilibrium, reactions occurring in living cells
are generally out of equilibrium and the ratio of the products to the reactants in vivo is called
the mass-action ratio, � . The ratio of the mass-action ratio to the equilibrium constant is
called the disequilibrium ratio:

� D
�

Keq
(1.7)

At equilibrium the mass-action ratio will be equal to the equilibrium constant, that is � D 1.
If the reaction is away from equilibrium (B=A < Keq), then � < 1.

For a simple unimolecular reaction it was previously shown that the equilibrium ratio of
product to reactant, B=A, is equal to the ratio of the forward and reverse rate constants.
Substituting this into the disequilibrium ratio gives:

� D �
k2

k1
D
B

A

k2

k1

Therefore:
� D

vr

vf
(1.8)

That is, the disequilibrium ratio is the ratio of the reverse and forward rates. If � < 1, the
net reaction must be in the direction of product formation. If � is zero, the reaction is as out
of equilibrium as possible with no product present.

1.6 Modified Mass-Action Rate Laws

A typical reversible mass-action rate law will require both the forward and the reverse rate
constants to be fully defined. Often however, only one rate constant may be known. In these
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circumstances it is possible to express the reverse rate constant in terms of the equilibrium
constant.

For example, given the simple unimolecular reaction, A 
 B , it is possible to derive the
following:

v D k1A � k2B

v D k1A

�
1 �

k2B

k1A

�
Since Keq D

k1

k2

v D k1A

�
1 �

�

Keq

�
(1.9)

where � is the mass-action ratio. This can be generalized to an arbitrary mass-action
reaction to give:

v D k1A
aBb : : :

�
1 �

�

Keq

�
D k1A

aBb : : : .1 � �/

where AaBb : : : represents the product of all reactant species, a and b are the correspond-
ing stoichiometric amounts, and � is the disequilibrium ratio. For example, for the reaction:

2AC B �! C C 2D

where k1 is the forward rate constant, the modified reversible rate law is:

v D k1A
2B .1 � �/

The modified formulation demonstrates how a rate expression can be divided up into func-
tional parts to include both kinetic and thermodynamic components [?]. The kinetic com-
ponent is represented by the term k1A

aBb : : : ; while the thermodynamic component is
represented by the expression 1 � �.

We can also derive the modified rate law in the following way. Given the net rate of reaction
v D vf � vr , we can write this expression as:

v D vf

�
1 �

vr

vf

�
That is:

v D vf .1 � �/

Further Reading

1. Sauro HM (2012) Enzyme Kinetics for Systems Biology. 2nd Edition, Ambrosius
Publishing ISBN: 978-0982477335
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1.7 Exercises

1. Define the terms:

a) Stoichiometric amount

b) Rate of change

c) Stoichiometric coefficient

d) Reaction Rate

2. Write out the mass-action rate law for the following reactions, assume each reaction is
irreversible.

a) AC B ! C

b) 2AC B ! C

3. Write out the mass-action rate law for the following reactions, assume each reaction is
reversible.

a) A! B

b) AC B ! C

c) 2AC B ! 3C

4. Write out the rate of change for each species in the following reactions, assume the
reaction rate is given by v:

a) A! B

b) 2AC B ! C

c) 2AC B ! AC C

5. Write out the equilibrium constant for the following reactions:

a) A! B

b) AC B ! C

c) 2AC B ! 3C CD

6. Define the terms:

a) Mass-action ratio

b) Disequilibrium ratio

7. A reaction is found to have a disequilibrium ration of 0.99, what can you say about the
reaction?
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2
Enzyme Kinetics in a Nutshell

Enzymes

Enzymes are protein molecules that can accelerate a chemical reaction without changing
the reaction equilibrium constant.

Enzyme Kinetics

Enzyme kinetics is a branch of science that deals with the many factors that can affect the
rate of an enzyme-catalysed reaction. The most important factors include the concentration
of enzyme, reactants, products, and the concentration of any modifiers such as specific
activators, inhibitors, pH, ionic strength, and temperature. When the action of these factors
is studied, we can deduce the kinetic mechanism of the reaction. That is, the order in which
substrates and products bind and unbind, and the mechanism by which modifiers alter the
reaction rate.

2.1 Michaelis-Menten Kinetics

The standard model for enzyme action describes the binding of free enzyme to the reac-
tant forming an enzyme-reactant complex. This complex undergoes a transformation,
releasing product and free enzyme. The free enzyme is then available for another round of
binding to new reactant.

E C S
k1
��*)��
k�1

ES
k2
�! E C P (2.1)

9
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where k1; k�1 and k2 are rate constants, S is substrate, P is product, E is the free enzyme,
and ES the enzyme-substrate complex.

By assuming a steady state condition on the enzyme substrate complex, we can derive
the Briggs-Haldane equation relation (sometimes mistakenly called the Michaelis-Menten
equation):

v D
Vm S

Km C S
(2.2)

where Vm is the maximal velocity, and Km the substrate concentration that yields half the
maximum velocity.

0 5 10 15 20 25 30
0

0:2

0:4

0:6

0:8

1

1
2
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Vm

Km Substrate Concentration (S )

In
iti

al
R

ea
ct

io
n

R
at

e,
v

Figure 2.1 Relationship between the initial rate of reaction and substrate concentration for
a simple Michaelis-Menten rate law. The reaction rate reaches a limiting value called the
Vm. Km is set to 4.0 and Vm to 1.0. The Km value is the substrate concentration that gives
half the maximal rate.

2.2 Reversible Rate laws

An alternative and more realistic model is the reversible form:

E C S
k1
��*)��
k�1

ES
k2
��*)��
k�2

E C P (2.3)

The aggregate rate law for the reversible form of the mechanism can also be derived and is
given by:

v D
Vf S=KS � Vr P=KP

1C S=KS C P=KP
(2.4)

Sometimes reactions appear irreversible, that is no discernable reverse rate is detected,
and yet the forward reaction is influenced by the accumulation of product. This effect is
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caused by the product competing with substrate for binding to the active site and is often
called product inhibition. Given that product inhibition is a type of competitive inhibition
we will briefly discuss it here. An important industrial example of this is the conversion of
lactose to galactose by the enzyme ˇ�galactosidase where galactose competes with lactose,
slowing the forward rate [?].

To describe simple product inhibition with rate irreversibility, we can set the P=Keq term
in the reversible Michaelis-Menten rate law (2.4) to zero. This yields:

v D
VmS

S CKm

�
1C

P

Kp

� (2.5)

2.3 Haldane Relationship

For the reversible enzyme kinetic law there is an important relationship:

Keq D
Peq

Seq
D
Vf KP

Vr KS
(2.6)

This equation shows that the four kinetic constants, Vf ; Vr ; KP and KS are not indepen-
dent. Haldane relationships can be used to eliminate one of the kinetic constants by sub-
stituting the equilibrium constant in its place. This is useful because equilibrium constants
tend to be known compared to kinetic constants which may be unknown. By incorporating
the Haldane relationship, we can eliminate the reverse maximal velocity (Vr ) from 2.4 to
yield the equation:

v D
Vf =KS .S � P=Keq/

1C S=KS C P=KP
(2.7)

Separating out the terms makes it easier to see that the above equation can be partitioned
into a number of distinct parts:

v D Vf � .1 � �=Keq/ �
S=Ks

1C S=KS C P=KP
(2.8)

where � D P=S . The first term, Vf , is the maximal velocity; the second term, .1 �
�=Keq/, indicates the direction of the reaction according to thermodynamic considerations.
The last term refers to the fractional saturation with respect to substrate. Thus we have a
maximal velocity, a thermodynamic and a saturation term.
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2.4 Competitive Inhibition

There are many molecules capable of slowing down or speeding up the rate of enzyme cat-
alyzed reactions. Such molecules are called enzyme inhibitors and activators. One common
type of inhibition, called competitive inhibition, occurs when the inhibitor is structurally
similar to the substrate so that it competes for the active site by forming a dead-end com-
plex.

a) Competitive Inhibition

E ES

EI

E + P

b) Uncompetitive Inhibition

E E + PES

ESI

Figure 2.2 Competitive and Uncompetitive Inhibition. P is the concentration of product,
E is the free enzyme, ES the enzyme-substrate complex, and ESI the enzyme-substrate-
inhibitor complex.

The kinetic mechanism for a pure competitive inhibitor is shown in Figure 2.2(a), where
I is the inhibitor and EI the enzyme inhibitor complex. If the substrate concentration is
increased, it is possible for the substrate to eventually out compete the inhibitor. For this
reason the inhibitor alters the enzyme’s apparent Km, but not the Vm.

v D
Vm S

S CKm

�
1C

I

Ki

�

D
Vm S=Km

1C S=Km C I=Ki

(2.9)

At I D 0, the competitive inhibition equation reduces to the normal irreversible Michaelis-
Menten equation. Note that the termKm.1CI=Ki / in the first equation more clearly shows
the impact of the inhibitor, I , on the Km. The inhibitor has no effect on the Vm.

A reversible form of the competitive rate law can also be derived:

v D

Vm

Ks

�
S �

P

Keq

�
1C

S

Ks
C
P

Kp
C

I

Ki

(2.10)

where Vm is the forward maximal velocity, and Ks and Kp are the substrate and product
half saturation constants.
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Product Inhibition

Sometimes reactions appear irreversible, where no discernable reverse rate is detected, and
yet the forward reaction is influenced by the accumulation of product. This effect is caused
by the product competing with substrate for binding to the active site and is often called
product inhibition. Given that product inhibition is a type of competitive inhibition, we
will briefly discuss it. An important industrial example of this is the conversion of lactose to
galactose by the enzyme ˇ�galactosidase where galactose competes with lactose, slowing
the forward rate [?].

To describe simple product inhibition with rate irreversibility, we can set the P=Keq term
in the reversible Michaelis-Menten rate law (2.4) to zero. This yields:

v D
VmS

S CKm

�
1C

P

Kp

� (2.11)

It is not surprising to discover that equation (2.11) has exactly the same form as the equation
for competitive inhibition (2.9). As the product increases, it out competes the substrate and
therefore slows down the reaction rate.

We can also derive the equation by using the following mechanism and the rapid-equilibrium
assumption:

E C S �*)� ES �! EP �*)� E C P (2.12)

where the reaction rate v is assumed to be proportional to ES.

2.5 Cooperativity

Many proteins are known to be oligomeric, meaning they are composed of more than one
identical protein subunit where each subunit has one or more binding sites. Often the
individual subunits are identical.

If the binding of a ligand (a small molecule that binds to a larger macromolecule) to one
site alters the affinity at other sites on the same oligomer, it is called cooperativity. If
ligand binding increases the affinity of subsequent binding events, it is termed positive
cooperativity whereas if the affinity decreases, it is termed negative cooperativity. One
characteristic of positive cooperativity is that it results in a sigmoidal response instead of
the usual hyperbolic response.

The simplest equation that displays sigmoid like behavior is the Hill equation:

v D
Vm Sn

Kd C S
n

(2.13)

One striking feature of many oligomeric proteins is the way individual monomers are phys-
ically arranged. Often one will find at least one axis of symmetry. The individual protein



14 CHAPTER 2. ENZYME KINETICS IN A NUTSHELL

monomers are not arranged in a haphazard fashion. This level of symmetry may imply
that the gradual change in the binding constants as ligands bind, as suggested by the Adair
model, might be physically implausible. Instead, one might envision transitions to an alter-
native binding state that occurs within the entire oligomer complex. This model was orig-
inally suggested by Monod, Wyman and Changeux [?], abbreviated as the MWC model.
The original authors laid out the following criteria for the MWC model:

1. The protein is an oligomer.

2. Oligomers can exist in two states: R (relaxed) and T (tense). In each state, symmetry
is preserved and all subunits must be in the same state for a given R or T state.

3. The R state has a higher ligand affinity than the T state.

4. The T state predominates in the absence of ligand S .

5. The ligand binding microscopic association constants are all identical. This is in
complete contrast to the Adair model.

Given these criteria, the MWC model assumes that an oligomeric enzyme may exist in
two conformations, designated T (tensed, square) and R (relaxed, circle). The equilibrium
between the two states has an equilibrium constant L D T=R, which is also called the
allosteric constant. If the binding constants of ligand to the two states are different, the
distribution of the R and T forms can be displaced towards either one form or the other. By
this mechanism, the enzyme displays sigmoid behavior. A minimal example of this model
is shown in Figure 2.3.

L

L = 

Figure 2.3 A minimal MWC model, also known as the exclusive model, showing alterna-
tive microscopic states in the circle (relaxed) form. L is called the allosteric constant. The
square form is called the tense state.

In the exclusive model (Figure 2.3) the ligand can only bind to the relaxed form (circle).
The mechanism that generates sigmoidicity in this model works as follows. When ligand
binds to the relaxed form, it displaces the equilibrium from the tense form to the relaxed
form. In doing so, additional ligand binding sites become available. Thus, one ligand
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binding may generate four or more new binding sites. Eventually there are no more tense
states remaining, at which point the system is saturated with ligand. The overall binding
curve will therefore be sigmoidal and will show positive cooperativity. Given the nature of
this model, it is not possible to generate negative cooperativity. By assuming equilibrium
between the various states, it is possible to derive an aggregate equation for the dimer case
of the exclusive MWC model:

v D Vm
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This also generalizes to n subunits as follows:
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(2.14)

For more generalized reversible rate laws that exhibit sigmoid behavior, the reversible Hill
equation is a good option. Invoking the rapid-equilibrium assumption, we can form a re-
versible rate law that shows cooperativity:

v D
Vf ˛ .1 � �/ .˛ C �/

1C .˛ C �/2

where � D �=Keq and ˛ and � are the ratio of reactant and product to their respective
equilibrium constant, ˛=KS and �=KP . For an enzyme with h (using the author’s original
notation) binding sites, the general form of the reversible Hill equation is given by:

v D
Vf ˛ .1 � �/ .˛ C �/

h�1

1C .˛ C �/h
(2.15)

2.6 Allostery

An allosteric effect is where the activity of an enzyme or other protein is affected by the
binding of an effector molecule at a site on the protein’s surface, other than the active site.
The MWC model described previously can be easily modified to accommodate allosteric
action.

The key to including allosteric effectors is to influence the equilibrium between the tense
(T) and relaxed (R) states (See Figure 2.4). To influence the sigmoid curve, an allosteric
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L

L = 

R2T2
R  X2

R  X2

R  X2 2

=
T2

R2

X

X

X X

Figure 2.4 Exclusive MWC model based on a dimer showing alternative microscopic
states in the form of T and R states. The model is exclusive because the ligand, X , only
binds to the R form.

effector need only displace the equilibrium between the tense and relaxed forms. For ex-
ample, to behave as an activator, an allosteric effector needs to preferentially bind to the
R form and shift the equilibrium away from the less active T form. An allosteric inhibitor
would do the opposite, that is bind preferentially to the T form so that the equilibrium shifts
towards the less active T form. In both cases the Vm of the enzyme is unaffected.

The net result of this is to modify the normal MWC aggregate rate law to the following if
the effector is an inhibitor:

v D Vm
˛ .1C ˛/n�1

.1C ˛/n C L.1C ˇ/n
(2.16)

where ˛ D S=Ks , ˇ D I=KI , and Ks and KI are kinetic constants related to each ligand.
A MWC model that is regulated by an inhibitor or an activator is described by the equation:

v D Vm
˛ .1C ˛/n�1

.1C ˛/n C L
.1C ˇ/n

.1C /n

There are also reversible forms of the allosteric MWC model but they are fairly complex.
Instead, it is possible to modify the reversible Hill rate law to include allosteric ligands.

v D

Vf ˛

�
1 �
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Keq

�
.˛ C �/h�1

1C �h

1C ��h
C .˛ C �/h

(2.17)

where:

� < 1 inhibitor

� > 1 activator
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Simple Hill Equations

When modeling gene regulatory networks, we often need simple activation and repression
rate laws. It is common to use the following Hill like equations to model activation and
repression, respectively. The third equation shows one example of how we can model dual
repression and activation, where S1 acts as the activator and S2 the inhibitor. n1 and n2 are
Hill like coefficients which may be used to alter the responsiveness of each factor.

Activation: v D
VmS

n

K C Sn

Repression: v D
Vm

K C Sn

Dual: v D
VmS

n1

1

1CK1S
n1

1 CK2S
n2

2 CK3S
n1

1 S
n2

2

2.7 Elasticities

Elasticities measure the response of a chemical reaction rate to changes in the immediate
environment. For example, given a simple reaction such as:

S ! P

we can measure two elasticities, one with respect to S and the other with respect to P .
Each elasticity gives us the response of the reaction rate when either S or P are changed,
respectively. Mathematically, the elasticity is defined in terms of a scaled derivative:

"vS D
@v

@S

S

v
'
v%
S%

(2.18)

According to the definition, one can interpret an elasticity as a ratio of relative changes.
Even though the elasticity is only defined for infinitesimal changes, we can approximate
the elasticity in terms of small finite changes and conveniently interpret it as the ratio of
percentage changes. For example, if we were to make a 2% change in S , and in turn
observed a 0.5% change in the reaction velocity, then the value of the elasticity is given
approximately by the ratio 0:5=2 D 0:25. Full details of the elasticity and its properties can
be found in the companion book Enzyme Kinetics for Systems Biology.

Unscaled Elasticity

We can also define the unscaled elasticity as:

EvS D
@v

@S
(2.19)
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Deriving Elasticities

Elasticities can be computed numerically or derived analytically. For example, given the
rate law:

v D kA

We can derive the elasticity with respect to A using the definition given by (2.18). This
involves first differentiating the expression with respect to A and then scaling the derivative
using A and v. In this case:

dv

dA
D k

Scaling yields:
@v

@A

A

v
D kA=v D kA=.kA/ D 1

The elasticity for a first order reaction is one. This means that a 1% change in A will yield
a 1% change in v.

Further Reading

1. Sauro HM (2012) Enzyme Kinetics for Systems Biology. 2nd Edition, Ambrosius
Publishing ISBN: 978-0982477335

2.8 Exercises

1. State one assumption used in deriving the Briggs-Haldane equation.

2. Show that the Km is the concentration of substrate when the reaction rate is half Vmax.

3. What is the difference between a reaction that is reversible and one that shows product
inhibition?

4. Write down the rate law for competitive inhibition. In competitive inhibition, the appar-
ent Km is changed but not the Vmax, justify this statement.

5. Define the term positive cooperativity

6. Define the elasticity coefficient

6. Derive the elasticity coefficients with respect to species A for the following rate laws:

a) v D kA

b) v D kA2

c) v D k1A � k2B

d) v D Af .k/



3
Quick Introduction to Python

In this book we will be using Python and the assorted Python packages to model the
dynamics of cellular networks. We will briefly covers some of the more important as-
pects of the Python programming language but will not attempt to teach Python to any
great depth. For that the reader is directed to the many commercial and free texts that
are available for those who want a more in depth description of how to program using
Python. Of particular recommendation is the Python tutorial on the Python web site itself
(https://docs.python.org/2/tutorial/), the New Mexico Tech Programming Tuto-
rial (http://infohost.nmt.edu/tcc/help/pubs/lang/pytut27/pytut27.pdf), the
codeacademy online course (http://www.codecademy.com/en/tracks/python), and
A Byte of Python at http://www.swaroopch.com/notes/python/.

To get started let’s define some terms that will be frequency used in the text. First and
foremost, what is Python?

Python Python is an easy to learn general purpose interactive programming language. It
has similar usability characteristics to Matlab or Basic. As such it is a good language
to use for doing pathway simulations and is easily learned by new users. In recent
years Python has also become more widely used as a general purpose scientific pro-
gramming language and now supports many useful libraries and tools for scientists
and engineers. All the scripts we provide in this book are written in Python.

SBML The Systems Biology Markup Language (SBML) is the de facto standard for ex-
changing models of biological pathways. SBML uses XML to represent pathway
models and is used to communicate models between different software applications.
Since the introduction of SBML there now exist model repositories such as Biomod-
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els (https://www.ebi.ac.uk/biomodels-main/)(which contain large numbers
of published models that can be downloaded and simulated. Details of SBML and its
capabilities can be found at the main SBML web site, sbml.org. For the purpose of
building and running models it is not necessary to know the details of how models
are stored in SBML. It is sufficient to be able to load and save SBML files.

Antimony SBML has become a de facto standard for exchanging models of biological
pathways. Any tool we use should therefore be able to support SBML. However
SBML is a computer readable language and it is not easy for humans to read or
write SBML. Instead more human readable formats have been developed. In this text
book we will be using the Antimony pathway description language. Models can be
described in Antimony then converted to SBML or vice versa.

libRoadRunner To support SBML from within Python we developed a C/C++ simulation
library called libRoadRunner that can read and run models based on SBML. In order
to use libRoadRunner within Python, we also provide a Python interface that makes
it easy to carry out simulations with Python.

Spyder Integration of the various tools including Python is achieved by using spyder2
(https://code.google.com/p/spyderlib/). Spyder2 offers a MATLAB like
experience in a friendly, cross-platform environment.

Matlplotlib Matplotlib is the standard plotting library for python.

Numpy Numpy is the standard library for for creating and manipulating data arrays.

3.1 Introduction to Python

One great advantage of the Python language is that is runs on many different kinds of com-
puters, most notably Windows, Mac and Linux but also small and cheap computers such
as the Raspberry Pi (http://www.raspberrypi.org/). All the simulations we describe
in this book can be run on a $35 Raspberry Pi. A basic Python setup can be obtained from
the python web site python.org. However to make it easier we can also obtained Python
IDE (Integrated Development Environment). In the Python world there are many IDEs to
choose from, ranging from very simple consoles to sophisticated development systems that
includes documentation, debuggers and other visual aids. In this book we use the cross-
platform IDE called spyder2 (https://code.google.com/p/spyderlib/).

The best way to learn Python is to download a copy and start using it. We have pre-
pared installers that install all the relevant components you need, these can be found at
tellurium.analogmachine.org. The Tellurium distribution includes some additional
helper routines which can make life easier for new users. We have version for the Mac
and Windows. We will use the Windows version here. To download the installer go to
the web site tellurium.analogmachine.org, and click on the first link you see called

https://www.ebi.ac.uk/biomodels-main/
sbml.org
https://code.google.com/p/spyderlib/
http://www.raspberrypi.org/
p
https://code.google.com/p/spyderlib/
tellurium.analogmachine.org
tellurium.analogmachine.org
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Download Windows version here. Run the installer and follow the instructions. Note that
the Tellurium installer will not interfere with any existing Python installations you might
already have.

Once Tellurium is installed go to the start menu, find Tellurium WinPython and select
the application called Spyder for Tellurium. If successful you should see something
like the screen shot in Figure 3.1 but without the plotting window. The screen-shot shows
three important elements, on the left we see an editor, this is where models and Python
code can be edited. On the lower right is the Python console where Python commands can
be entered. At the top right we show a plotting window that illustrates some output from
a simulation. For those familiar with IPython, the latest version of spyder2 supports the
IPython console directly.

Figure 3.1 Screen-shot of Tellurium, showing editor on the left, Python console bottom
right and plotting window top-right.

3.1.1 Running Commands from the Console

Once you have started the Tellurium IDE, let us focus on the Python console at the bottom
right of the application. A screen-shot of the console is shown in Figure 3.2.

The >>> symbol marks the place where you can type commands. The following examples
are based on Python 2.7. To add two numbers, say 2 + 5, we would type the following:

>>> print 2 + 5

7

>>>
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Figure 3.2 Screen-shot of Tellurium, focusing on the Python console.

Listing 3.1 Simple Arithmetic

Just like Matlab or Basic we can assign values to variables and use those variables in other
calculations:

>>> a = 2

>>> b = 5

>>> c = a + b

>>> print c

7

>>>

Listing 3.2 Assigning values to variables

The types of values we can assign to variables include values such as integers, floating point
numbers, Booleans (True or False), strings and complex numbers.

>>> a = 2

>>> b = 3.1415

>>> c = False

>>> d = "Hello Python"

>>> e = 3 + 6j

>>>

Listing 3.3 Different kinds of values: integer, floating point, Boolean, string and a com-
plex number

Many functions in Python are accessible via modules. For example to compute the sin of a
number we can’t simply type sin (3.1415). Instead we must first load the math module.
We can then call the sin function:

>>> import math

>>> print sin (3.1415)

9.265358966049026e-05

>>>
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Listing 3.4 Importing modules (libraries) into Python

In Tellurium we preload some libraries including the math library.

3.1.2 Repeating Calculations

One of the commonest operations we do in computer programming is iteration. We can
illustrate this with a simple example that loops ten times, each time printing out the loop
counter. This example will allow us to introduce the IDE editor. The editor is the panel on
the left side of the IDE. In the editor we can type Python code, for example we can type:

a = 4.0

b = 8.0

c = a/b

print "The answer is:", c

Listing 3.5 Writing a simple program in the IDE editor

When we’ve finished typing this in the editor window, we can save our little program to a
file (Select Menu: File/Save As...) and run the program by clicking on the green arrow in
the tool bar of the IDE (Figure 3.3). If we run this program we will see:

The answer is: 0.5

>>>

Listing 3.6 Writing a simple program in the IDE editor

Figure 3.3 Screen-shot of Tellurium, focusing on the Toolbar with the run button circled.

The IDE allows a user to have as many program files open at once, each program file is
given its own tab so that it is easy to move from program to the next. This is useful if we
are working on multiple models or programs at the same time.

We will now use the editor to write the simple program that loops ten times, this is shown
below:

for i in range (10):

    print i,
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Listing 3.7 A simple loop in python

This will generate the sequence:

0 1 2 3 4 5 6 7 8 9

Listing 3.8 Result from simple loop program

There are a number of new concepts introduced in this small looping program. The first
line contains the for keyword that can be translated into literal English as “for all elements
in a list, do this”. The list is generated by the range() function and in this case generates
a list of 10 numbers starting at 0. i is the loop index and within the loop, i can be used in
other calculations. In this case we just print the value of i to the console. Each time the
program loops it extracts the next value from the list and assigns it to i.

Two things are important to note in the print line. The first and most important is that
the line has been indented four spaces. This isn’t just for aesthetic reasons but is actually
functional. It tells Python what code should be executed within the loop. To elaborate we
could add more lines to the loop, such as:

for i in range (10):

    a = i

    b = a*2

    print b,

print "Finished Loop"

Listing 3.9 A simple loop illustrating multiple statements

In this example there are three indented lines, this means that these three lines will be
executed within the loop. The last line which prints a message, is not indented and therefore
will not be executed within the loop. This means we only see the message appear once right
at the end. The output for this little program is shown below.

0 2 4 6 8 10 12 14 16 18 Finished Loop

Another important point worth noting is the use of the , after the loop print statement. The
comma is used to suppress a newline. This is why the output appears on one line only. If
we had left out the comma each print statement would be on its own line.

A final word about range(), range takes up to three arguments. In the example we only
gave one argument, 10. A single argument means create a list starting at zero, incrementing
one for each item until 10 items have been created. Adding a second argument such as in
range (5, 10) means start the list at 5 rather than zero. Finally, a third argument can be
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used to specify the increment size. For example the command range (1, 10, 2) will
yield the list:

[1, 3, 5, 7, 9]

The easiest way to try out the various options in range is to type them at the console to get
immediate feedback.

The use of variables, printing results, importing libraries and looping are probably the min-
imum concepts one needs to start using Python. However there are a huge range of re-
sources online to help learn Python. Of particular interest is the codecademy web site
(http://www.codecademy.com/). This site offers an interactive means to learn Python
(including other programming languages).

3.1.3 Making Decisions: Conditionals

As well are repeating calculations, another very common operation when writing program
code is making decisions based on a previously computed value. A typical example is given
below:

a = 3

if a > 2:

   print "a is greater than 2"

else:

   print "a is smaller than 2"

To make decisions in Python we use the key word if which is followed by the test we
want to make. If the test is true the following indented code is executed. If the code has the
optional else keyword, then if the test is false the else code is executed. The code fragment,
a > 2 is called a Boolean expression because it resolves to either True or False. There
are a number of so-called Boolean operations that can be used in Boolean expressions.
Table 3.1 illustrates some of common Boolean operators used in Python.

The operators >, <, >= and <= should be self-explanatory but a couple of the other op-
erators are worth describing in more detail. The operator == may look odd but all it does
is test if two things are the same, for example 1 == 2 will resolve to false whereas 5 ==

5 will resolve to true. Likewise != tests whether two things are not equal to each other,
for example "ATP" != "ATP" will return false where as "Glucose" == "Fructose" will
return true.

3.1.4 Creating Functions in Python

The other important concept to learn in Python is the notion of functions. We’ve already
used the sin function in a previous section. Python comes with many hundreds of functions

http://www.codecademy.com/
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Boolean Operator Description

> Greater Than
< Less Than
>= Greater than or equals
<= Less than or equals
== equals
!= not equal to
or true if either of two things are true
and true if two things are simultaneously true
not negation, True and not False are equivalent statements

Table 3.1 Selection of functions from the math package

like this. Table 3.2 lists a few of the functions that can be found in the math package.

Math Function Description

sin Compute Sine of an angle
cos Compute Cosine of an angle
tan Compute Tangent of an angle
fabs Compute the absolute value of a number
log10 Compute logarithm to base 10 of a number
sqrt Compute square root of a number

Table 3.2 Selection of function from the math package

We can also create our own functions. Often when writing a program, we may find that
some operations are repeated often. In such cases it is convenient and good design practice
to turn these sections of code into a function. Let’s say we wrote a program that repeatedly
needed to compute the area of a square, that is multiply the width and height. We could
define a function called area that accepts the width and height as arguments and returns
the area. The code below show how we would write this function:

def area (width, height):

   return width*height

Listing 3.10 Defining a function in Python

This is a fairly simple function but one could imagine much more complicated functions.
For example consider writing a function to tell us whether a given number is prime or not.
A prime number is a number that is only divisible by 1 or itself, therefore, 7 is a prime but
9 is not.

The code code below, Listing 3.3.5 defines a function isPrime that can be used to decide
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whether a given number is a prime number or not. The function returns True is the argu-
ment to the function is a prime, otherwise it returns False. The first part of the function
checks if the number coming into the function, n is zero or one, both of these numbers are
by definition not prime numbers. Next we check if the number is even because all even
number can not be prime since they are divisible by 2. Finally we start a loop checking to
see if the number is divisible without a reminder by any number greater than 2. One final
thing that this code introduces are comments. Comments are notes we add to the code to
remind ourself of why we the code code the way we did. Comments are started with the
hash symbol and the a text description. Note that comments are not executed.

One piece of code that has not been described is the % symbol. This computes the reminder
of a number. For example 5 % 2 will yield 1 because the reminder after dividing 5 by 2 is
one. A code fragment such as 5 % i == 0 is an easy way to test whether is number can
be divided by i without a reminder.

def isPrime(n):

    # No negative numbers

    if n < 0:

       return False

    # zero and one are by definition not prime numbers

    if n == 0 or n == 1:

       return False

    # Anything divisible by 2 is not a prime

    if n % 2 == 0:

       return False

    for i in range(3, n):

        if n % i == 0:

            return False

    return True

Listing 3.11 Simple function to decide whether a number is prime or not

Comments are notes added to a program. Comments are started with a # symbol.

# This is a comment

3.2 Brief Introduction to Numpy

Numpy is an extremely useful package that supports arrays as well as other mathematical
support in Python. To use Numpy first import the library as follows:
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import numpy as np

3.2.1 Creating Arrays

There are various ways to create Numpy arrays, examples include:

# Create a simple 3 by 3 array of values

m = np.array([[1.5, 6.7, 3.4], [7.4, 5.6, 1.1], [0.7, 23.5, 3.4]])

# Create a populated vector, arguments are

# starting value, ending value, number of elements

>>> np.linspace (1, 10, 10)

# Create a 2 by 3 matrix with zero elements

>>> np.zeros((2, 3))

array([[ 0., 0., 0.], [ 0., 0., 0.]])

3.2.2 Indexing Elements

Unlike many scientific languages, Python indexes array from zero. This give the array:
m D np:array.ŒŒ1:5; 6:7�; Œ0:7; 23:5��/, index 0, 0 is the element at the top/left row/column.

>>> m = np.array([[1.5, 6.7], [0.7, 23.5]])

>>> print m[0,0]

array([1.5])

3.2.3 Extracting Rows and Columns

Extracting a column from an array is very straight forward, use a single index that corre-
sponds to the row of interest.

>>> m = np.array([[1.5, 6.7], [0.7, 23.5]])

>>> print m[0]

array([1.5, 6.7])

To extract a column we can use the slicing syntax. This is extended from the normal python
slicing syntax. A numpy slice takes the form: array [from, to]. That is it pulls out a section
of the array starting and from and ending at to. The from and to entries have the following
syntax, start:end where start and end are numbers corresponding to array indices. Note that
the end value is end-1 indexth. Some examples will make this clear
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>>> m = np.array([[1.5, 6.7], [0.7, 23.5]])

>>> print m[0:2,0:2]  # Means print out the entire matrix

array([[1.5, 6.7], [0.7, 23.5]])

With this syntax it is straight forward to extract subarrays from a larger array. However
when make the slicing more useful is that most the arguments are optional. For example
missing out the start and end value in the from argument and leaving just the colon, means
all rows. Likewise with the to argument, a single colon here means all columns. Knowing
this, the entire array can be expressed using m[:,:]. What is more useful is when we omit
the arguments selectively. For example, m[:,1] means extract column index 1. Or m[2,:]
means extract the 3rd row.

3.2.4 Stacking Arrays

A very useful technique is being able to stack arrays either one above the other or concate-
nating them side by side. In simulation this can be useful when multiple simulations are
carried out and a single array constructed that contains all the simulations. To stack one
array on top of the other use the numpy method vstack:

>>> m1 = np.array([[1, 6], [2, 5]])

>>> m2 = np.array([[3, 9], [4, 7]])

>>> m3 = np.vstack ((m1, m2))

>>> print m3

array([[1, 6],

       [2, 5],

       [3, 9],

       [4, 7]])

To stack arrays horizontally, use the hstack method:

>>> m1 = np.array([[1, 6], [2, 5]])

>>> m2 = np.array([[3, 9], [4, 7]])

>>> m3 = np.hstack ((m1, m2))

>>> print m3

array([[1, 6, 3, 9],

       [2, 5, 4, 7]])

For both vstack and hstack to work the dimensions of the arrays to be stacked must be
compatible. For example two arrays that are to be stacked horizontally must have the same
number of rows.

The final thing to node is that syntax for the stack methods use a tuple to indicate what
arrays to stack. A tuple is a simple list of values, very much list a python list but more
efficient. The advantage of using a tuple is that we can use the stacking methods to stack



30 CHAPTER 3. QUICK INTRODUCTION TO PYTHON

as many arrays as we like in one statement, for example:

>>> m1 = np.array([[1, 6], [2, 5]])

>>> m2 = np.array([[3, 9], [4, 7]])

>>> m3 = np.array([[5, 3], [6, 2]])

>>> m4 = np.hstack ((m1, m2, m3))

>>> print m4

array([[1, 6, 3, 9, 5, 3],

       [2, 5, 4, 7, 6, 2]])

3.3 Plotting Graphs

One of the most important abilities to learn is to plot data. The library most commonly
used in python to plot data is matplotlib combined with the array handling library Numpy.
Let’s start by importing matplotlib and numpy into python:

>>> import numpy as np

>>> import pylab as pl

3.3.1 Basic Plotting

Let’s start by examining how to do line plots. The primary plotting command is plot. This
command can take many different arguments but the most common will by x and y data.
For example:

# Make two arrays for x and y data

x = [1,2,3,4,5]

y = [25,16,9,4,1]

# plot the data

pl.plot (x,y)

# show the plot

pl.show()
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3.3.2 Changing Markers and Line Styles

To mark the individual points in a plot we include additional arguments in the plot com-
mand that indicates the type of marker we’d like to use. In the following example we use
marker='o' as the third argument (use round markers) and linestyle=� as the fourth
(don’t plot a line).

# Make two numpy arrays for x and y data

x = np.array ([1,2,3,4,5])

y = np.array ([25,16,9,4,1])

# plot the data as scatter plot

pl.plot (x,y, marker='o', linestyle='')

# show the plot

pl.show()
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'o' Round
's' Square
'p' Pentagon
'*' Star
'h' Hexagon
'+' Plus
'x' x marker
'D' Diamond

� No lines
'-' Continuous line
'-.' Dash-dot line
':' dotted line

Table 3.3 Matplotlib Markers and Line Styles
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There is a wide variety of markers to chose from, some are listed in Table 3.3. L:Ikewise
there are a variety of line styles shown in Table ??

3.3.3 Changing Colors

The color of markers and lines can be changed using the color argument. One way to do
this is to call plot twice once to add the markers and a second time to add the lines. In
matplotlib, each call to plot will add an additional plot to the existing graph. The show
command releases the graph so that subsequent call to plot will add the plots to a new
graph.

# Make two numpy arrays for x and y data

x = np.array ([1,2,3,4,5])

y = np.array ([25,16,9,4,1])

# plot the data as a line and scatter plot

pl.plot (x,y, marker='o', linestyle='')
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Figure 3.4 Plotting Sine and Cosine Curves

pl.plot (x,y, color='g')

# show the plot

pl.show()

3.3.4 Plotting Functions

What if we wanted to plot the sine and cosine curves? TO do this we would first compute
arrays that contain sine and cosine curves, the plot each one.

# Make two arrays for x and y data

x = np.linspace (0, 10, 64)

# Use the numpy sin/cos functions which can use vectors as arguments

s = np.sin (x)

c = np.cos (x)

# plot the data as a line and scatter plot

pl.plot (x, s, color='b', linewidth=2.5)

pl.plot (x, c, color='r', linewidth=2.5)

# show the plot

pl.show()
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3.3.5 Arithmetic using Numpy

One of the more useful features of the numpy library is that is allows one to use the nor-
mal arithmetic operations, such as addition and multiplication to be applied to arrays of
data. For example suppose we had a vector 1,2,3,4 and we wanted to added 4 top every
element. One way would be to set up a loop and ad 4 to each element. A much more con-
venient way is to use the numpy vector arithmetic. To add 4 to every element of the array
we wouldsimply add 4 to the array, as follows:

>>> x = np.array([1,2,3,4])

>>> y = x + 4

>>> print x

array([5, 6, 7, 8])

Note that it is very important that the array store in x is a numpy array. If we did x =

[1,2,3,4], x would be a list and we couldn’t do the arithmetic. Given this ability we can
use this to easily create arrays of data created from arbitrary functions. For example:

def myfunc (x):

    return np.sin(x*1.2) + np.cos(x*2.3)

>>> x = np.linspace (0, 40, 200)

>>> y = myfunc (x)

>>> pl.plot (x,y)

>>> pl.show()

3.4 Exercises

1. What is Python?

2. What does the acronym SBML stand for?

3. What is SBML?

4. What is antimony?

5. What is libRoadRunner?

6. What is numpy?

7. What is matplotlib?

8. Plot the irreversible Michaelis-Menten equation as a function of substrate concentra-
tion.

Use a Km D 0:5 and Vmax D 5.
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9. Plot a range of Michaelis-Menten curves using Km values 0.5, 1.5, 2.5, 3.5, 4.5

10. Show that at the Km value, the reaction rate is half the Vmax.

11. Plot the irreversible Hill equation as a function of substrate concentration.

Hint: Be aware that the power operator, ^ does not work with vectors, You must
instead use the np.power (x,n) function.

Use a Km D 0:5, Vmax D 5 and n D 4.

12. Plot a range of Hill equation curves using n values 0, 1, 2, 4, 8, 16

13. Explore how changes in Km, Vmax and n affect the shape of the reaction response.

14. Derive the elasticity for the Brigg-Haldane enzyme rate law and plot the elasticity as
a function of substrate level.

15. Plot the elasticity for the Hill equation.

16. What differences do you observe between the elasticity response of the Briggs-
Haldane and Hill equation?
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4
Networks in a Nutshell

4.1 Mass Conservation

In the first chapter we saw how the rate of changes of a species was a function of the
reaction rate and the stoichiometric coefficient, that is:

dA

dt
D cav (4.1)

What would happen if a species, A, was involved in two reactions, one reaction producing
A and another reaction consuming A:

v1
�! A

v2
�!

where v1 and v2 are the production and consumption rates respectively. How would we
write out the rate of change of A? We can invoke mass conservation to help us. In partic-
ular, any change in A must be due to difference between A that is produced and A that is
consumed, that is: Rate of production of A:

dAp

dt
D v1

Rate of consumption of A:
dAc

dt
D �v1

37
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Summing the two gives us the overall rate of change of A

dA

dt
D
dAp

dt
C
dAc

dt
D v1 � v2

In general for a species Si that has many production rates and many consumption rates the
overall rate of change is given by:

dSi

dt
D

X
j

cij vj (4.2)

where cij is the stoichiometric coefficient for species i with respect to reaction, j .

4.2 Exercise

Write out the net rates of change (dSi=dt ) for the following reaction systems. The reaction
are given on the left and the reaction rate on the right:

a)
S1 C S2 ! S3 v1

b)
S1 ! S2 v1

S2 ! S3 v2

S3 ! S4 v3

c)
! S1 v1

S1 ! v2

S1 ! v3

d)
S1 ! S2 v1

S2 ! S1 v2

e)
S1 ! 2S2 v1

S2 ! S3 v2

S3 ! v3

! S3 v4

f) Make up your own reaction network and write out the net rate of change equations.
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Detailed Model Modeling individual addition of nucleotides and amino acids
Moderate Detail Model production of mRNA and protein as simple pools
Simple Model Model production of protein, merge transcription and transla-

tion in to one reaction
Promoter Activity Model either using a Hill equation or explicitly as a bind-

ing/unbinding event.

Table 4.1 Different ways to model gene expression

4.3 Modeling Gene Networks

Metabolic and signaling networks can be modelled using a sequence of reactions as shown
in the previous section. For example assume a protein A binds protein B to form complex
C . Complex C degrades as a result of binding to another protein D. Sequestration of D
by protein E to form complex F . This scenario could be modeled using the following set
of reactions:

AC B ! C v1 Protein binding step

C CD ! D v2 Protein degradation catalyzed by D

D CE ! F v2 Protein sequestration of D

Given a suitable description of the biological process it shouldn’t be difficult to come up
with a suitable set of reactions. Gene networks are treated slightly differently however. The
modeling of gene expression can be carried out at different levels. The most detailed model
might consist of individual reactions that add nucleotides to a growing mRNA strand or the
addition of individual amino acids to a grown peptide. We will not consider such detailed
models here. Alternatively we can model gene expression using pools for mRNA and
protein. Finally we an dispense with the mRNA completely and model gene expression as a
single process that produces protein. Additional modifications can be made to the promoter
mechanism. The simplest approach is to represent the rate of gene expression using a
simple Hill equation that is a function of the transcription factor. Alternatively it is possible
to explicitly model the transcription factor binding to the promoter site (Figure 4.1).

A model for simplest case would be:

v D
Vm T

K C T

where T is the concentration of transcription factor, Vm the maximal rate of gene expres-
sion, K a Michaelis like constant, and v is rate at which protein is made. A more compli-
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P1 Protein

P1 mRNA
Protein

v2

P1

P1

Active

Inactive
v4r

v4f

v1

a)

b)

c)

Figure 4.1 Three different ways to model gene expression. a) Simple expression of protein;
b) Modeling mRNA production. Note that mRNA acts as a catalyst for protein synthesis.
c) Modeling the promoter explicitly.

cated model can be built by explicitly modelling the mRNA pool. This is shown below:

! mRNAv1
mRNA! degradation products

Protein! degradation products

What is missing form this description are the rate laws. The rate of mRNA production
can be model using a Hill equation where the rate of mRNA production is a function of
transcription factor. The degradation of mRNA can be modelled as a simple first-order
mass-action kinetic law, v D kmRNA. The protein synthesis step may require some ex-
planation. In Figure 4.1 we depict protein synthesis as being catalyzed by mRNA. This
is reasonably since mRNA is not degraded by the ribosome. There are various possibil-
ities for the protein synthesis rate law. The simplest is a first-order mass-action rate law
that is a function of mRNA, v D kmRNA. However we might feel that it is possible to
saturate the ribosome with mRNA in which case we might use a Briggs-Haldane rate law:
v D VmmRNA=.K C mRNA/. Finally we must include a protein degradation step which
again can be modeled as a first-order mass-action rate law, v D kProtein. The full set of
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differential equations for the model shown in Figure 4.1 will be:

dmRNA
dt

D Hill Equation � Degradation rate

dProtein
dt

D Protein Synthesis � Degradation rate

4.4 Exercises

1. Consider the simple network:

! S !

Assume that the first reaction has a constant reaction rate of vo and the second reaction a
first-order rate equal to kS . Answer the following questions:

a) What kinds of mechanisms could you image would allow the first reaction to have a
constant rate?

b) Write out the differential equation for S , i.e dS=dt .

c) At steady state, the rate of change of S is zero. Determine the steady state level of S .

2. Write out the differential equation for the model shown in Figure 4.1c. There should be
three differential equations, one for P1, P1Inactive and one for Active state.
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5
Entering Models

Int he last chapter we briefly saw how to write down the differential equations given a
network. As fun as that might be, it is error prone. Instead we use automated tools to derive
the equations for use. This is the purpose of Antimony.

5.1 Describing Reaction Networks using Antimony

Antimony is a language for describing reaction networks. Such networks can be chemi-
cal reaction networks, metabolic networks, protein signaling networks or gene regulatory
networks.

The code shown in the panel below illustrates a very simple model using the Antimony
syntax followed by two lines of Python that uses libRoadRunner to run a simulation of
the model. In this section we will briefly describe the Antimony syntax. A more detailed
description of Antimony can be found at http://antimony.sourceforge.net/index.

html.

import tellurium as te

r = te.loada ('''

  S1 -> S2; k1*S1;

  S1 = 10; k1 = 0.1

''')

r.simulate (0, 50, 100)

r.plot()

43
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Listing 5.1 Model expressed in Antimony and simulated using libRoadRunner

The main purpose of Antimony is to make it straight forward to specify complex reaction
networks using a familiar chemical reaction notation.

A chemical reaction can be an enzyme catalyzed reaction, a binding reaction, a phospho-
rylation, a gene expressing a protein or any chemical process that results in the conversion
of one of more species (reactants) to a set of one or more other species (products). In
Antimony, reactions are described using the notation:

A + ... -> P + ...

where the reactants are on the left side and products on the right side. The left and right are
separated by the -> symbol. For example:

A -> B

describes the conversion of reactant A into product B. In this case one molecule of A is
converted to one molecule of B. The following example shows non-unity stoichiometry:

2 A -> 3 B

which means that two molecules of A react to form three molecules of B. Bimolecular and
other combinations can be specified using the + symbol, that is:

2 A + B -> C + 3 D

tells us that two molecules of A combine with one molecule of B to form one molecule of C
and three molecules of D.

To specify species that do not change in time (boundary species), add a dollar character in
front of the name, for example:

$A + B -> C

means that during a simulation A is fixed.

Reactions can be named using the syntax J1:, for example:

J1: A + B -> C

means the reaction has a name, J1. Named reaction are useful if you want to refer to the
flux of the reaction; kinetic rate laws come immediately after the reaction specification. If
only the stoichiometry matrix is required, it is not necessary to enter a full kinetic law, a
simple ... -> S1; v; is sufficient. Here is an example of a reaction that is governed by
a Michaelis-Menten rate law:

A -> B; Vm*A/(Km + A);

Note the semicolons. Here is a more complex example involving multiple reactions:

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);

TopBranch: S1 -> $X1; Vm1*S1/(Km1 + S1);
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BottomBranch: S1 -> $X2; Vm2*S1/(Km2 + S1);

There is no need to pre-declare the species names shown in the reactions or the parameters
in the kinetic rate laws. Strictly speaking, declaring the names of the floating species is
optional, however this feature is for more advanced users who wish to define the order
of rows that will appear in the stoichiometry matrix. For normal use there is no need to
pre-declare the species names. To pre-declare parameters and variables see the example
below:

const Xo, X1, X2; // Boundary species

var S1; // Floating species

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);

TopBranch: S1 -> $X1; Vm1*S1/(Km1 + S1);

BottomBranch: S1 -> $X2; Vm2*S1/(Km2 + S1);

We will describe this in more detail in the next section but we can load an Antimony model
into libRoadRunner using the short-cut command loada. For example:

import tellurium as te

rr = te.loada ('''

const Xo, X1, X2; // Boundary species

var S1; // Floating species

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);

TopBranch: S1 -> $X1; Vm1*S1/(Km1 + S1);

BottomBranch: S1 -> $X2; Vm2*S1/(Km2 + S1);

''')

To reference model properties and methods, the property or method must be proceeded
with the roadrunner variable. e.g. rr.S1 = 2.3;

When loaded into libRoadRunner the model will be converted into a set of differential
equations. For example, consider the following model:

$Xo -> S1; v1;

S1 -> S2; v2;

S2 -> $X1; v3;

This model will be converted into:
dS1

dt
D v1 � v2

dS2

dt
D v2 � v3
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Note that there are no differential equations for Xo and X1. This is because they are fixed
and do not change in time. If the reactions have non-unity stoichiometry, this is taken into
account when the differential equations are derived.

5.1.1 Initializing of Model Values

To initialize the concentrations and parameters in a model we can add assignments after the
network is declared, for example:

MainFeed: $X0 -> S1; Vm*X0/(Km + X0);

TopBranch: S1 -> $X1; Vm1*S1/(Km1 + S1);

BottomBranch: S1 -> $X2; Vm2*S1/(Km2 + S1);

X0 = 3.4; X1 = 0.0;

S1 = 0.1;

Vm = 12; p.Km = 0.1;

Vm1 = 14; p.Km1 = 0.4;

Vm2 = 16; p.Km2 = 3.4;

5.1.2 Setting up Compartments

For multi-compartment models, or models where the compartment size changes over time,
one can define compartments in Antimony by using the ‘compartment’ keyword, and des-
ignate species as being in particular compartments with the ‘in’ keyword. For example

# Examples of different compartments

compartment cytoplasm = 1.5, mitochondria = 2.6

const S1 in mitochondria

var S2 in cytoplasm

var S3 in cytoplasm

const S4 in cytoplasm

S1 -> S2; k1*S1

S2 -> S3; k2*S2

S3 -> S4; k3*S3

Example 5.1

Describe the following network using Antimony. The rate laws are given by v1; v2; : : :.

-> A; v1;

A -> B; v2;
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Figure 5.1 Reaction Network

A -> C; v3;

B + E -> 2 D; v4;

-> E; v5;

B -> C + F; v6;

C -> D; v7;

D -> ; v8;

F -> ; v9

5.2 Including Additional Equations with the Model

Sometime additional equations need to be included with the model. For example, comput-
ing the pH during a simulation or changing an input in a defined way. The example below
shows how the pH can be computed as te model is simulated:

# Computing the pH in the model

pH := -log10 (H)

# These two reaction consume and product hydrogen ions

$Xo -> H; k1*Xo

H -> $X1; k2*H

H = 0.001

Note the use of the assignment symbol :=. The use of this symbol is to distinguish this
expression from a simple assignment which only happens once at the start of a simulation.
The use of := means that the equation gets evaluated continuously. This means that the pH
can be inspected at any time during a simulation. Another application for model equations
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is when we wish to input a signal into our model. For example if we wanted to inject a sine
wave in to a model we might use the antimony script:

Example 5.2

Assume the following networkXo  S1  whereXo is a boundary metabolite. Write an Antimony
model where Xo starts at a value of startXo = 2, then increases at a linear rate, k. Assume that
the consumption of S1 is governed by k2S1 and product by k1Xo.

startXo = 2

Xo := k*time + startXo;

$Xo -> S1; k1*Xo;

S1 -> ; k2*S1;

k = 0.75; k1 = 2; k2 = 0.2; S1 = 0;

Notice how the amplitude is assigned using the initialization symbol = since we only need
to do this once. The sine function equation uses the := symbol because the sine wave must
be injected into the model continuously.

5.3 Loading and Running Models in Python

libRoadRunner is a high performance simulator that can simulate models described using
SBML. In order to use Antimony with libRoadRunner it is necessary to first convert an
Antimony description into SBML and then load the SBML into libRoadRunner. Telluirum
provides a handy routine called loadAntimonyModel to help with this task (The short-cut
name is loada). To load an Antimony model we first assign an Antimony description to a
string variable, for example:

model = '''

S1 -> S2; k1*S1;

S1 = 10; k1 = 0.1;

'''

We now use the loadAntimonyModel (model) or loada to load the model into libRoad-
Runner.

>>> rr = te.loadAntimonyModel (model)

Listing 5.2 Loading an Antimony model

In this book we generally use the short-cut command as follows:
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rr = te.loada ('''

    S1 -> S2; k1*S1;

    S1 = 10; k1 = 0.1;

 ''')

>>>

Listing 5.3 Loading an Antimony model using the short-cut command

Note that loadAntimonyModel and loada are part of the Tellurium Python package sup-
plied with the Tellurium installer. If the Tellurium packages hasn’t been loaded, use the
following command to load the Tellurium package:

>>> import tellurium as te

Listing 5.4 Importing the Tellurium Package

5.3.1 Loading Antimony Models

As we’ve seen before, loading an Antimony model is most easily achieved by using the
loada method from the tellurium library.

import tellurium as te

r = te.loada ('''

   S1 -> S2; k1*S1;

   S1 = 10; k1 = 0.1;

''')

5.4 Models as Differential Equations

Sometimes a model is provided in the form of a set of differential equations. This may be
because the model cannot be easily expressed as a reaction scheme. Sometimes it might
be desirable to create a hybrid model where part of the model is described as a reaction
scheme and another part as one or more differential equations. Antimony allows one to
describe differential equations directly using a special syntax. A differential equation such
as:

dx

dt
D f .x/

is described in Antimony using:

import tellurium as te
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r = te.loada ('''

   x' = f(x)

''')

dx=dt is represented by the syntax x'. The example below shows how we can use Ant-
imony to expression the famous Lorenz chaotic model. This model has three differential
equations for the variables, x; y, and z. We’ve also included a simulation command that
will solve the differential equations (see a later chapter).

import tellurium as te

# Example showing how to describe a model using ODES

# Example implements the Lorenz attractor.

r = te.loada ('''

     x' = sigma*(y - x);

     y' = x*(rho - z) - y;

     z' = x*y - beta*z;

     x = 0.96259;  y = 2.07272;  z = 18.65888;

     sigma = 10;  rho = 28; beta = 2.67;

''')

result = r.simulate (0, 20, 1000, ['time', 'x', 'y', 'z'])

r.plot (result)

Other models such as predator/prey or mechanical models describing motion can also be
expressed this way.

5.5 Exercises

1. Obtain the paper by Edelstein BB, Biochemical Model with Multiple Steady States
and Hysteresis, J. theor Bio, 29, 57-62 (1970). Enter the model described in the paper
(equations, 1, 2, 3) in Antimony format.

2. Obtain the paper by Heinrich, Rapoport and Rapoport, Metabolic regulation and math-
ematical models., Prog Biophys Mol Biol. 1977;32(1):1-82. Enter the model described as
scheme 3 (page 18) into Antimony foramt.

3. Pick a paper of your own choice and enter the model in Antimony format.
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Sharing Models

6.1 Sharing Models

Imagine the following scenarios:

1. You find a paper that includes a very interesting model of a signaling pathway. You’d
like to get this model running. The paper describes the model in words and has a
short appendix where it describes some of the equations they used. You spend the
next 4 days trying to get the model working in Matlab, but you just can’t get it to
work. You try to contact the authors but she says all the files were misplaced when
the student left the lab. All that is available is what is in the paper. So you spend
another week trying to get the model to work. The frustrating bit is it sort of works
but doesn’t quite give the same results as descried in the paper. You decide to spend
one more week, but it still doesn’t work so you give up.

2. You find a paper that includes a very interesting model of a signaling pathway. You’d
like to get this model running. The paper describes a model and as part of a supple-
ment provides a file you can download. This file is for a simulation application that is
described in another paper. You search out the paper and find a description of the ap-
plication. The paper also tells you where you can get the executable. Unfortunately it
only runs on Linux and you’ve no idea how to use Linux because the authors expect
you to compile the application yourself. You contact the authors but again those who
originally knew how to get the application running not longer work in the group. In-
stead you find a friendly programmer who tries to get the application running. After a
week of hacking away your friendly programmer finally has the application running.
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You manage to run the model after getting a crash course in Linux but there are some
numerical errors. The friendly programmer goes back and has another go and after
two days manages to fix the problem. You have a working model. The problem now
is, because you don’t know much about hardcore programming there is no way to
explain to someone else how to run the model on their computer.

3. You find a paper that includes a very interesting model of a signaling pathway. You’d
like to get this model running. The paper describes a model and as part of a sup-
plement provides a file you can download. This file is for a simulation application
that runs on Windows that is described in another paper. You search out the paper
and find a description of the application and a web site where where you can get the
executable. The web site still exists, but it looks a little old so you’re a bit suspi-
cious. You download the application and find out that there are missing dependent
files from the application which means it won’t run on the latest version of Windows.
Unfortunately the source code isn’t available so you can’t even try to recompile the
application to run the model so you give up.

4. You find a paper that includes a very interesting model of a signaling pathway. You’d
like to get this model running. The paper describes a model and as part of a supple-
ment provides a file you can download. This file turns out to be a COMBINE archive
which contains everything you need to reproduce the graphs shown in the paper. You
find an application that supports the COMBINE archive (such as Tellurium), you
load it and it reproduces the paper’s results flawlessly.

There are many scenarios like the ones described above where often it is impossible to get
a published model working. There are many reasons for this that include:

1. Missing data

2. Incorrect data (units wrong, values wrong)

3. Undefined terms/graph axes

4. Mismatch between text and model

5. Wrong model supplied with paper

6. Only one model supplied but multiple simulations described

7. Simulation environment no longer available

8. Model no longer available (url points to a non-existent page)

9. Model only supplied as a binary
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How can we avoid these problems? One way is to have everyone publish their models in an
agreed community standard that is both independent of the computer operating system and
the application you might use to run the model. Two such standards currently exist, SBML
and CellML. We will concentrate on SBML here.

SBML is based on XML and closely follows the way existing modeling packages represent
models. For example, SBML represents biochemical networks as a list of chemical trans-
formations. It employs specific and different elements to represent spatial compartments,
molecular species, and parameters. In addition, SBML also has provision for rules which
can be used to represent constraints, derived values, and general math. SBML (sbml.org),
like any standard, has evolved with time. Major revisions of the standard are captured in
levels, while minor modifications and clarifications are captured in versions. An exam-
ple of a major change within the standard would be the use of MathML in level two of
SBML, whereas level one encoded infix (common algebra) strings to denote reaction rates
and rules. The most recent level of SBML is level three where new functionality can be
supported through extension packages.

Along with the standardization of model representation, there has been an obvious de-
sire to create model repositories where models published in journals can be stored and
retrieved. There are currently five repositories with varying degrees of quality and usabil-
ity. The most promising is the UK based BioModels Database, which at the current time
(July 2013) holds over nine hundred and sixty three curated and working models that can
be downloaded in standard SBML and other formats. BioModels also has the great benefit
of providing programmatic access to its database via web services, which allows any soft-
ware program to access the database seamlessly across the internet. Models stored in the
BioModels Database are curated, meaning that models will reproduce the author’s origi-
nal intention. In addition, the models are liberally annotated so model components can be
referenced from other database sources.

6.1.1 Loading SBML Models

RoadRunner can also reads models using the SBML format. If you have a SBML model
stored on your hard drive, it is possible to load that model either by giving the document
contents or the path to the SBML file. Let’s assume you have a model called mymodel.xml
in C:\MyModels. To load this model in Windows we would use the command:

import roadrunner

rr = roadrunner.RoadRunner("C:/MyModels/mymodel.xml")

On the Mac or Linux one might use:

import roadrunner

rr = roadrunner.RoadRunner("/home/MyModels/mymodel.xml")

sbml.org
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6.1.2 Loading Models from Biomodels

Since the introduction of SBML, a number of institutions have built repositories of pub-
lished models. Possibly one of the most well known is biomodels. Tellurium, via libRoad-
Runner, has direct support for accessing models at the biomodels repository. The example
below shows roadrunner being loaded with biomodels BIOMD0000000010.

str = "http://www.ebi.ac.uk/biomodels-main/download?mid=BIOMD0000000010"

rr = roadrunner.RoadRunner(str)

6.2 Generating SBML and Matlab Files

Tellurium can import and export standard SBML [1] as well as export Matlab scripts for
the current model.

6.2.1 Exporting SBML

To load a model in SBML, load it directly into libRoadRunner. For example:

>>> rr = roadrunner.RoadRunner ('mymodel.xml')

>>> result = rr.simulate (0, 10, 100)

There are two ways to retrieve the SBML, one can either retrieve the original SBML loaded
using rr.getSBML() or retrieve the current SBML using rr.getCurrentSBML(). Re-
trieving the current SBML can be useful if the model has been changed. To save the SBML
to a file we can use the Tellurium helper function saveToFile (), for example:

>>> te.saveToFile ('mySBMLModel.xml', rr.getCurrentSBML())

6.2.2 Exporting Matlab

To convert an SBML file into Matlab, use the getMatlab method:

import tellurium as te

rr = te.loada ('''

    S1 -> S2; k1*S1;

    S2 -> S3; k2*S2;

    S1 = 10; k1 = 0.1; k2 = 0.2;

''')
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# Save the SBML

te.saveToFile ('model.xml', rr.getSBML())

# Save the Matlab

te.saveToFile ('model.m', rr.getMatlab())

6.3 Test models

Tellurium comes with a set of test models than can be easily accessed using the testing API.
To get a list of current test models, enter the following:

import tellurium as te

print te.listTestModels()

This will return a list of string names where the names are names of models. To load a
particular test model enter the following:

import tellurium as te

sbmlStr = te.getTestModel ('feedback.xml')

This will return the SBML of the model as a string. To load the test model directly into
libRoadRunner enter the following:

import tellurium as te

r = te.loadTestModel ('feedback.xml')

m = r.simulate (0, 10, 100)

r.plot()

6.4 Exercises

1. Enter the following model into Tellurium using Antimony:

    $S1 -> S2; k1*S1;

    S2 -> S3;  k2*S2;

    S3 -> $S4  k3*S3;

    S1 = 10; k1 = 0.1; k2 = 0.2; k3 = 0.3;

Save the SBML for this model to your hard drive. Look at the file in an editor and try to
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identify the various parts of the model.

2. Obtain a copy of another simulator, possibilities include Coyote (http://wp.me/
P41o0Y-cV), COPASI (http://www.copasi.org/ or SBMLsimulator. (http://www.
ra.cs.uni-tuebingen.de/software/SBMLsimulator/).

3. Using the same model, covert the model into a Matlab function. Look at the Matlab file
in an editor and try to identify the various parts of the model.

http://wp.me/P41o0Y-cV
http://wp.me/P41o0Y-cV
http://www.copasi.org/
http://www.ra.cs.uni-tuebingen.de/software/SBMLsimulator/)
http://www.ra.cs.uni-tuebingen.de/software/SBMLsimulator/)


7
Running a Simulation

7.1 Time Course Simulation

Once a model has been loaded into libRoadRunner, performing a simulation is very straight
forward. To simulate a model we use the libRoadRunner simulate method. This method
has many options but for everyday use four options will suffice. The following panel illus-
trates a number examples of how to use simulate.

>>> result = r.simulate ()

>>> result = r.simulate (0, 10)

>>> result = r.simulate (0, 10, 100)

>>> result = r.simulate (0, 10, 100, ['time', 'S1'])

Listing 7.1 Calling the simulate method

Argument Description

1st Start Time
2nd End Time
3rd Number of Points
4th Selection List

Let us focus on the forth version of the simulate method that takes four arguments. This
call will run a time course simulation starting at time zero, ending at time 10 units, and
generating 100 points. The results of the run are deposited in the array result. At the end
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of the run, the result array will contain columns corresponding to the time column and
all the species concentrations as specified by the forth argument. The forth argument can
be used to change the columns that are returned from the simulate method. For example:

>>> result = r.simulate (0, 10, 1000, ['S1'])

will return an array 1,000 rows deep and one column wide that corresponds to the level of
species S1.

Note that the special variable Time is available and represents the independent time variable
in the model.

To visualize the output in the form of a graph, we call the libRoadRunner plot method. In
the following example we return one species level, S1 and three fluxes. Finally we plot the
results.

   result = r.simulate (0, 10, 1000, ['Time', 'S1', 'J1', 'J2', 'J3']);

   r.plot()

or if we are not interested in keeping the data itself we can use the libRoadRunner plot:

   r.simulate (0, 10, 1000, ['Time', 'S1', 'J1', 'J2', 'J3']);

   r.plot()

It is possible to set the output column selections separately using the command:

r.selections = ['time', 'S1']

This can save some typing each time a simulation needs to be carried out. By default the
selection is set to time as the first column followed by all molecular species concentrations.
As such it is more common to simply enter the command:

>>> result = r.simulate (0, 10, 50)

In fact even the start time and end time and number of points are optional and if missing,
simulate will revert to its defaults.

>>> result = r.simulate()

7.1.1 Plotting Simulation Results

Tellurium comes with Matplotlib, a common plotting package used by many Python users.
To simplify its use we provide two simple plotting calls:
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te.plotArray (array)

te.plotWithLegend (r, array)

r.plot()

The first takes the resulting array generated by a call to simulate and uses the first column
as the x axis and all subsequent columns as y axis data. The second call takes the roadrun-
ner variable as well as an array and does the same kind of plot but this time adds a legend
to the plot. We will use the second plotting command in the next section where we merge
together multiple simulations. The third plot command is associated with libRoadRunner
and will plot the last set of data generated from a simulation. The advantage of the first two
calls is that they can take additional matplotlib settings.

7.1.2 Setting and Getting Values

Often during a modeling experiment one will need to change parameter values, initial con-
dition or inspect values after a simulation has completed. For model parameters and species
concentration one can access to these values using the syntax r.X. If a model has a kinetic
constant k1, then its value can be changed or inspected using the following syntax, assum-
ing r is the roadrunner object:

r.k1 = 1.2

print r.k1

If a model contains the species ATP, then its value can be changed or inspected using the
following syntax, assuming r is the roadrunner object:

r.ATP = 1.5

print r.ATP

Changing initial conditions is slightly different. The initial conditions represent the values
of the species that are the starting values for a simulation. The easiest way to set the
starting values is to use the method reset. This copies the current set of initial conditions
to the model. We can also change the initial conditions if we wish. There are a number of
methods to get and set the initial conditions of a loaded model. The values stored in the
initial conditions are applied to the model whenever it is reset.

To set the initial conditions we can use the following syntax:

# Set the initial concentration of S1

r.model['init([S1])'] = 3.4

print r.model['init([S1])'

The ’init([S1])’ string is used to indicate the particular state variable we wish to set the
initial condition for. We can set both the amount or concentration of a species. For example
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to set the amount we simply leave out the square bracket:

# Set the amount of S1

r.model['init(S1)'] = 3.4

print r.model['init(S1)'

We can also retrieve the init strings using the two calls:

print r.model.getFloatingSpeciesInitAmountIds()

['init(S1)', 'init(S2)']

r.model.getFloatingSpeciesInitConcentrationIds()

['init([S1])', 'init([S2])']

It is also possible to set the entire vector of initial conditions using the method calls:

r.model.setFloatingSpeciesInitAmounts ([2.6, 7,8])

r.model.setFloatingSpeciesInitConcentrations ([1.2, 34.5])

Retrieving Reaction Rates or Fluxes The fluxes through the individual reactions can be
obtained by either referencing the name of the reaction (e.g. J1), or via the short-cut com-
mand rv. The advantage to looking at the reaction rate vector is that the individual reaction
fluxes can be accessed by indexing the vector (see example below). Note that indexing is
from zero.

>>> print rr.J1, rr.J2, rr.J3

3.4, ...

>>> for i in range (0, 2):

...    print rr.rv()[i]

3.4

etc

->

7.1.3 Selecting Output from a Simulation

RoadRunner supports a range of options for selecting what data a simulation should return.
The simulate method, by default returns an structured array, which are arrays that also
contain column names. These can be plotted directly using the built in rr.plot() function,
or by adding the plot=True keyword argument to simulate().

The output selection defaults to time and the set of floating species. It is possible to change
the simulation result values by changing the selection list. For example assume that a model
has three species, S1, S2, and S3 but we only want simulate() to return time in the first
column and S2 in the second column. To specify this we would type:
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result = r.simulate (0, 10, 100, ['time', 'S2'])

In another example let say we wanted to plot a phase plot where S1 is plotted against S2.
To do this we type the following:

result = r.simulate(0, 10, 100, ['S1', 'S2'])

7.1.4 Resetting Simulations

There are three important reset methods:

� reset: Copies the current initial conditions to the model ready for a simulation

� resetAll: Copies the current initial conditions and the set of parameters that were
originally loaded.

� resetToOrigin: resets the model back to what is was when the model was first
loaded.

For example:

import tellurium as te

rr = te.loada ('''

  J1: S1 -> S2; k1*S1;

  J2: S1 = 10; k1 = 0.1

''')

m1 = rr.simulate (0, 50, 100)

rr.reset()

rr.k1 = 0.5

m2 = rr.simulate (0, 50, 100)

Listing 7.2 Named Reactions

7.1.5 Access to Fluxes or Rates of Reaction

Reactions in an Antimony model can be named. For example, the model shown below
defines two reactions where the first reaction is given the name J1 and the second reaction
J2.

import tellurium as te
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rr = te.loada ('''

  J1: S1 -> S2; k1*S1;

  J2: S1 = 10; k1 = 0.1

''')

rr.simulate (0, 50, 100)

rr.plot()

Listing 7.3 Named Reactions

The reaction rate through a given reaction can be accessed by referencing the name of the
reaction. For example to print out the reaction rate for reaction J1, we can use the Python
code:

>>> print rr.J1

The reaction names can also be used in selection lists. Thus if we wish to plot the change
in reaction rates as a function of time we can use the syntax:

>>> result = rr.simulate(0, 10, 100, ['time', 'J1', 'J2])

Alternatively the vector of reactions rates can be obtained using the method:

>>> r.getReactionRates()

which returns an array of values, corresponding to the reaction rates returned by the method
r.getReactionIds().

7.1.6 Access to Rates of Change

During a time course simulation, species concentrations will change. The rate at which a
species, x, changes is represented by the expression "x'". Given the model shown below:

import tellurium as te

rr = te.loada ('''

  J1: S1 -> S2; k1*S1;

  J2: S1 = 10; k1 = 0.1

''')

rr.simulate (0, 50, 100)

rr.plot()

Listing 7.4 Named Reactions
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the rate of change of species S1 and S2 can be obtained using the syntax:

>>> print r.model["S1'"], r.model["S2'"]

Alternatively the vector of rates of change can be obtained using the method:

>>> r.getRatesOfChange()

which returns an array of values, corresponding to the species names returned by the
method r.model.getFloatingSpeciesIds().

Rates of change can also be set in the simulate selection list:

import tellurium as te

rr = te.loada ('''

  J1: S1 -> S2; k1*S1;

  J2: S1 = 10; k1 = 0.1

''')

# Note the use of the double quote that allows us to use S1'

m = rr.simulate (0, 50, 100, ['time', 'S1', "S1'"])

Listing 7.5 Named Reactions

7.1.7 Applying Perturbations to a Simulation

Often in a simulation we may wish to perturb a species or parameter at some point during
the simulation and observe what happens. One way to do this in Tellurium is to carry out
two separate simulations where a perturbation is made between two flanking simulations.
For example, let’s say we wish to perturb the species concentration for a simple two step
pathway and watch the perturbation decay. First, we simulate the model for 10 time units;
this gives us a transient and then a steady state.

import numpy # Required for vstack

import tellurium as te

rr = te.loada ('''

     $Xo -> S1;  k1*Xo;

      S1 -> $X1; k2*S1;

     Xo = 10; k1 = 0.3; k2 = 0.15;

''')

m1 = rr.simulate (0, 40, 50)
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We then make a perturbation in S1 as follows:

rr.S1 = rr.S1 * 1.6

which increases S1 by 60%. We next carry out a second simulation:

m2 = rr.simulate (40, 80, 50)

Note that we set the time start of the second simulation to the end time of the first simula-
tion. Once we have the two simulations we can combine the matrices from both simulations
using the Python command vstack

% Merge the two result arrays together

m = numpy.vstack ((m1, m2))

Finally, we plot the results, screen-shot shown in Figure 7.1.

te.plotArray (m)

Figure 7.1 Screen-shot from Matplotlib showing effect of perturbation on S1.

7.1.8 Using Antimony to Implement Events

The Antimony languages allows user to include events that should happen at specific times.
For example, in the previous model S1 was increased 60% at time 40. In Antimony we
would specify this using the at syntax:

import tellurium as te

rr = te.loada ('''

     $Xo -> S1;  k1*Xo;
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      S1 -> $X1; k2*S1;

     Xo = 10; k1 = 0.3; k2 = 0.15;

     at time > 40: S1 = S1*1.6

''')

m = rr.simulate (0, 80, 200)

rr.plot()

7.2 Perturbations and Events

import tellurium as te

import pylab as plt

r = te.loada("""

    v := alpha*sin (time) + k1*Xo + 2;

    $Xo -> S1; v;

   J1: S1 ->; k2*S1;

     k1 = 0.1; k2 = 0.2; Xo = 1;

     alpha = 1;

     at (time > 40): alpha = 0;

""")

m = r.simulate(0, 100, 200, ['time', 'S1', 'J1'])

plt.plot (m[:,0], m[:,1], label='k1=' + str (r.k1))

plt.plot (m[:,0], m[:,2], label='k2=' + str (r.k2))

plt.legend(loc='center')

7.3 Other Model Properties of Interest

There are a number of predefined objects associated with a reaction network model which
might also be of interest. For example, the stoichiometry matrix, sm, the rate vector rv, the
species levels vector sv and dv the rates of change vector.

print rr.sm() # Print the stoichiometry matrix

print rr.rv() # Print vector of reaction rates

print rr.sv() # Print the vector of species concentrations
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print rr.dv() $ Print the vector of rates of change

The names for the parameters and variables in a model can be obtained using the short-cuts:

print rr.fs() # List of floating species names

print rr.bv() # List of boundary species names

print rr.ps() # List of parameter names

print rr.rs() # List of reaction names

print rr.vs() $ List of compartment names

7.4 More on Plotting

In a previous chapter we described some of the basic plotting facilities that come with
the Python package matplotlib. In particular the plot command is used to plot data. One
small issue with the plot command than can make its use a little tedious is that is requires
separate x and y arrays whereas the simulate command returns a single array with the first
column the independent data and subsequent columns the dependent data. It is possible to
use Python’s slicing syntax to extract the x and y columns as in:

plot (result[:,0],result[:,1:])

which splits the columns into the first column and all remaining columns. To help new
users avoid such issues we provide two methods of interest. The first is a plot commend
directly on the roadrunner variable. For example:

r.plot()

where r is a roadrunner variable. This will plot the last data simulated, using the first
column as the independent variable and subsequent columns as the dependent columns.
The nice feature about this command is that it also adds a legend to the plot. For more
flexibility Tellurium also offers the plotArray command. An example of how to use it is
given below:

import tellurium as te

m = rr.simulate (0, 80, 200)

te.plotArray (m)

plotArray takes a single argument which is an array of data. The advantage of plotArray
is that is can be used in conjunction with the show=False which allowing multiple graphs
to be plotted on the same plot, for example:

import tellurium as te

r.k1 = 1.5
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m = rr.simulate (0, 80, 200)

te.plotArray (m, show=False)

r.reset()

r.k1 = 2.0

m = rr.simulate (0, 80, 200)

te.plotArray (m, show=True)

7.4.1 Controlling Axes etc

There will often be situation where more control over a plot is required. For example a
common need is to be able to control the axes limits. To change the characteristics of a plot
first import ptlab:

import pylab

With pylab one can now set things like axes limits. For example to set the limits on the y
and x axes and axes titles use:

>>> pylab.xlim ((0,5))

>>> pylab.ylim ((0,10))

>>> pylab.xlabel ('Time')

>>> pylab.ylabel ('Concentration')

>>> pylab.title ('My First Plot ($y = x^2$)')

Here is a complete example:

import tellurium as te

import pylab

# Example showing how to embellish a graph, change title, axes labels.

# Example also uses an event to pulse S1

r = te.loada ('''

   $Xo -> S1; k1*Xo;

   S1 -> $X1; k2*S1;

   k1 = 0.2; k2 = 0.4; Xo = 1; S1 = 0.5;

   at (time > 20): S1 = S1 + 0.35

''')

# Simulate the first part up to 20 time units

m = r.simulate (0, 50, 100, ["time", "S1"]);
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plt.ylim ((0,1))

plt.xlabel ('Time')

plt.ylabel ('Concentration')

plt.title ('My First Plot ($y = x^2$)')

r.plot (m)

7.5 Exercises

1. Build a model of a closed system:

So
v1
! S1

v2
! S2

v3
! S3

a) What is a closed system?

b) If the system is closed the concentrations of So and S3 should be fixed. Why is this?

Assume that the rate laws for the three reactions are given by:

So -> S1;   k1*So - k2*S1;

S1 -> S2;   k3*S1 - k3*S2;

S2 -> S3;   k5*S2 - k6*S3;

and the following parameter values:

So = 4;    S3 = 0;

k1 = 1.2;  k2 = 0.45;

k3 = 0.56; k4 = 0.2;

k5 = 0.89; k6 = 0;

c) Carry out a simulation of this system and plot the time course for the concentrations of
So; S1; S2 and S3 using t = 0 to t = 50. Once the system settles down what is the net flux
through the pathway? Hint: You may need to name a reaction to get hold of the flux.

2. Turn the previous system into an open system by fixing So and S3. Rerun the same
simulation. What is the net flux through the pathway?

What is the difference in the net flux between the close and open system?

3. Figure 7.2 shows a two gene circuit with a feedforward loop. Assume the following rate
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laws for the four reactions:

v1 D k1Xo

v2 D k2x1

v3 D k3Xo

v4 D k4x1x2

Assume that all rate constants are equal to one and that Xo D 1. Assume Xo is a fixed
species.

v
o

x

1

v2

X

v

x

3
v4

2

1

Figure 7.2 Two gene circuit with feedfoward loop.

Based on this model answer the following questions:

a) Express this model as an Antimony script

b) Write out the differential equations for x1 and x2.

c) Run a simulation of the system from 0 to 10 time units.

d) Change the value of Xo to 2 (double it) and rerun the simulation for another 10 time
units from where you left off in the last simulation. Combine both simulations and plot the
result, that is time on the x-axis, and Xo and x2 on the y-axis.

e) What do you see from the last simulation?

f) Show algebraically that the steady state level of x2 is independent of Xo (Hint: Set the
differential equations to zero)

4. Consider the following model:

! S vo

2S ! k S2

a) Write out the differential equation for S .

b) Enter the model into Tellurium and set the following values:

k1 D 0:5; vo D 2; S D 0
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Run a simulation from 0 to 10. What do you observe?

c) Set the value of S D 0:000001. Rerun the simulation, what do you observe?

d) Derive the analytical solution for the steady state and attempt to explain your observa-
tions.

5. Let us now consider an enhancement to the previous model

! S ko C k1S
2=.k2 C S

2/

S ! k S

This time we have made the consumption step a simple first order reaction. The first step
is slightly more complicated. It has a basal rate of ko and a nonlinear positive feedback
rate given by a Hill function with a Hill coefficient of 2. Setup up the model by using the
following parameters values:

vo D
6

11
; k1 D

60

11
; k2 D 11; k3 D 1

Run the following experiments

a) Set S D 0:6 and run a simulation from time zero to 60. Record the value of S.

b) Set S D 5:6 and run a simulation from time zero to 60. Record the value of S.

c) What do you observe?

d) Run many simulations for a range of starting values of

S D Œ0:9; 1:1; 1:3; 1; 5; 1:7; 2:1; 2:3; 2:6�.

Graph each simulation on the same plot so you can observe the effect.

Hint: To plot multiple simulations on the same graph you can use te.plotarray (m)

together with the argument show=False.

import tellurium as te

# Example of how to hold a plot in Tellurium

m = r.simulate (0, 80, 200)

te.plotArray (m, show=False)

# Change something, simulate and replot

m = r.simulate (0, 60, 100)

te.plotArray (m, show=True)

What do you observe?

6. Repeat the last exercise but this time you can only use the matplotlib method, plot. Use
the internet to look up how to use the plot method and a python technique call slicing in
order to extract the appropriate columns from the simulation result array.
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Steady State Analysis

8.1 Steady State

To evaluate the steady-state first make sure the model values have been previously initial-
ized, then enter the following statement at the console.

>>> rr.steadyState()

This statement will attempt to compute the steady state and return a value indicating how ef-
fective the computation was. It returns the norm of the rate of change vector (i.e.

pP
dydt ).

The closer this is to zero, the better the approximation to the steady state. Anything less
than 10�4 usually indicates that a steady state has been found.

Once a steady state has been evaluated, the values of the species will be at their steady state
values, thus S1 will equal the steady state concentration of S1.

Exercise

Find the steady state for the following system using the steadyState command:

import tellurium as te

r = te.loada ('''

      $Xo -> S1; k1*Xo;

      S1 -> $X1; k2*S1;
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      Xo = 5.6; X1 = 0;

      k1 = 0.34; k2 = 0.67;

''')

The command, r.dv() will return a vector of current rates of change. dv is a shorthand for
r.getRatesOfChange(). Likewise r.rv() will return a vector of current reaction rates –
shorthand for r.getReactionRates().

Use the commands r.dv() and r.rv() to show that the system is at steady state.

8.1.1 Stability Analysis

The stability of a steady state can be determined by computing the eigenvalues of the Jaco-
bian computed at the steady state. The jacobian matrix can be returned using the command:
rr.getFullJacobian()). The following example illustrates this method.

import tellurium as te

r = te.loada ('''

      $Xo -> S1; k1*Xo;

      S1 -> S2; k2*S1 - k3*S2;

      S2 -> $X1; k4*S2;

      Xo = 5.6; X1 = 0;

      k1 = 0.34; k2 = 0.67;

      k3 = 0.12; k4 = 0.87l

''')

r.steadyState();

print r.getFullJacobian()

>>>

         S1,    S2

S1 [[ -0.67,  0.12],

S2  [  0.67, -0.99]]

To determine the eigenvalues of the Jacobian we use the tellurium method getEigenvalues
as follows:

import tellurium as te

r = te.loada ('''

      $Xo -> S1; k1*Xo;

      S1 -> S2; k2*S1 - k3*S2;

      S2 -> $X1; k4*S2;
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      Xo = 5.6; X1 = 0;

      k1 = 0.34; k2 = 0.67;

      k3 = 0.12; k4 = 0.87l

''')

r.steadyState();

print te.getEigenvalues (r.getFullJacobian())

array([-0.50442359, -1.15557641])

An alternative is to use the libRoadrunner method r.getFullEigenValues()

print r.getFullEigenValues ()

array([-0.50442359, -1.15557641])

In this case both eigenvalues are negative indicating that the steady state is stable.

8.2 Metabolic Control Analysis

Metabolic control analysis (MCA) is a mathematical framework for describing metabolic,
signaling and genetic pathways. MCA quantifies how variables, such as fluxes and species
concentrations, depend on network parameters. In particular it is able to describe how
network dependent properties, called control coefficients, depend on local properties called
elasticities. MCA was originally developed to describe the control in metabolic pathways
but was subsequently extended to describe signaling and genetic networks.

Metabolic control analysis is the study of how sensitive the system is to perturbations in
parameters and how those perturbations propagate through the network. Two kinds of sen-
sitivity are defined, system and local. The local sensitivities are described by the elasticities.
These are defined as follows:

"vS D
@v

@S

S

v
D
@ ln v
@ lnS

Given a reaction rate vi , the elasticity describes how a given effector of the reaction step
affects the reaction rate. Because the definition is in terms of partial derivatives, any effector
that is perturbed assumes that all other potential effectors are unchanged.

The system sensitivities are described by the control and response coefficients. These come
in two forms, flux and concentration. The flux control coefficients measures how sensitive
a given flux is to a perturbation in the local rate of a reaction step. Often the local rate
is perturbed by changing the enzyme concentration at the step. In this situation the flux
control coefficient with respect to enzyme Ei is defined as follow:

C JEi
D

dJ

dEi

E1

J
D

d lnJ
d lnEi
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Likewise the concentration control coefficient is defined by:

CSEi
D

dS

dEi

E1

S
D

d lnS
d lnEi

where S is a given species. The response coefficients measure the sensitivity of a flux or
species concentration to a perturbation in some external effector. These are defined by:

RJX D
dJ

dX

X

J
D
d lnJ
d lnX

RSX D
dJ

dX

X

S
D
d lnS
d lnX

where X is the external effector.

8.2.1 Control Coefficients

To compute control coefficients use the statement:

x = getCC (Dependent Measure, Independent parameter)

The dependent measure is an expression usually containing flux and metabolite references,
for example, S1, J1. The independent parameter must be a simple parameter such as a
Vmax, Km, ki, boundary metabolite (X0), or a conservation total such as cm_xxxx. Exam-
ples include:

  rr.getCC ('J1', 'Vmax1')

  rr.getCC ('J1', 'Vm1') + rr.getCC ('J1', 'Vm2')

  rr.getCC ('J1', 'X0')

  rr.getCC ('J1', 'cm_xxxx')

8.2.2 Elasticity Coefficients

To compute elasticity coefficients use the statement:

x = getEE (Reaction Name, Parameter Name)

For example:

  rr.getEE ('J1', 'X0')

  rr.getEE ('J1', 'S1')

Since getCC and getEE are built-in functions, they can be used alone or as part of larger
expressions. Thus, it is easy to show that the response coefficient is the product of a control
coefficient and the adjacent elasticity by using:



8.3. EXERCISES 75

  R = rr.getCC ('J1', 'X0')

  print R - rr.getCC ('J1', 'Vm') * rr.getEE ('J1', 'X0')

8.3 Exercises

1. Consider the following model which we’ve see in a previous chapter:

! S ko C k1S
2=.k2 C S

2/

S ! k S

The first step has a basal rate of ko and a nonlinear positive feedback rate given by a Hill
function with a Hill coefficient of 2. The consumption step, k S , is a simple first order
reaction. Setup the following parameters values:

vo D 6=11; k1 D 60=11; k2 D 11; k3 D 1

Run the following experiments

a) Set S D 0:6 and find the steady state using the steady state function.

b) Set S D 5:6 and find the steady state using the steady state function. Record the value
of S.

c) What do you observe?

d) Call the steady state function many times for a range of starting values of

S D Œ0:9; 1:1; 1:3; 1; 5; 1:7; 2:1; 2:3; 2:6�.

e) How many steady states did you find?

2. For each steady state you found in question 1 determine its stability properties
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9
Running Parameter Scans

9.1 Introduction

There are two ways to carry out parameter scans in Telluirum/Python. The first is to write
your own piece of code to do the scanning. The second is to use the supplied package
ParameterScan that provides a different way to run simulations and plot graphs. In this
chapter we will only look at writing your own scanning code.

First thing to do is look at some code that will run a series of time course simulation, plot
each solution and add a legend.

# Parameter Scan

# This code will run five simulations, each simulation

# having a different values for a rate constant

import tellurium as te

import numpy as np

import pylab

from matplotlib.pyplot import cm

r = te.loada ('''

    J1: $X0 -> S1; k1*X0;

    J2: S1 -> $X1; k2*S1;

    X0 = 1.0; S1 = 0.0; X1 = 0.0;

    k1 = 0.4; k2 = 2.3;

''')
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for r.k1 in np.linspace (0.4, 5, 5):

    r.reset()

    m = r.simulate (0, 4, 100, ["Time", "S1"])

    te.plotArray (m, resetColorCycle=False, label='k1 = ' + str (r.k1), show=False)

pylab.legend()

The script first setups up the model and initializes the parameters and initial conditions. We
use a for loop to create a range of values for the rate constant k1. Note how we use r.k1 as
the variable to assign the new values to. Next within the for loop, we do three things. First
we reset the simulation. What this does is reset all the species concentrations back to their
original values (Note is doesn’t change the parameter values). The second statement within
the for loop, carries out the actual simulation and returns the results in m. The third and final
statement in the for loop is to plot the result. We use plotarray to to do this. This method
takes its first argument to be the result array followed by optional matplotlib settings. The
first is to resetColorCycle=False, this ensures that we get a different colored line on
each turn of the loop. The other thing is to set show=False to that each plot is overlayed
on the other. We assign a label to the simulation, a label that indicate the value of k1 we
used in the simulation. These labels will be used to create the legend. Once out of the for
loop we to display the legend. Figure ?? shows the result.

Figure 9.1 Plotting time course simulations as a function of k1. Includes a legend to
indicate what line is what.

In the following example we repeat the last example but this time we only use standard
matplotlib commands.

# Parameter Scan

# This code will run five simulations, each simulation

# having a different values for a rate constant
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import tellurium as te

import numpy as np

import pylab

r = te.loada ('''

    J1: $X0 -> S1; k1*X0;

    J2: S1 -> $X1; k2*S1;

    X0 = 1.0; S1 = 0.0; X1 = 0.0;

    k1 = 0.4; k2 = 2.3;

''')

for r.k1 in np.linspace (0.4, 5, 5):

    r.reset()

    m = r.simulate (0, 4, 100, ["Time", "S1"])

    pylab.plot (m[:,0], m[:,1], label='k1 = ' + str (r.k1))

pylab.legend()

The example illustrates the use of array slicing to extract the appropriate columns of data
from the result array.
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10
Model Fitting

10.1 Introduction

In constructing computational models of biochemical systems, we make choices about
what reaction steps, regulatory interactions and molecular species to include. Given these
choices, how good is the model? Does the model adequately describe existing knowledge
about the system? Can the model make useful predictions? Some of the model parameters
might be estimated experimentally but many will be unknown. How can we estimate these
parameters and how well can they be estimated? Such questions fall under the umbrella of
model fitting.

Fitting a model means adjusting the parameters of the model until the behavior of the
model matches some known experimental data. Details of model fitting are given in the
companion book: Systems Biology: Introduction to Pathway Modeling [?] and only a very
brief explanation will be given here.

10.2 Fitting Models

To understand how the fitting process works, consider a simple model:

S1
k1
! S2

We start an experiment with an initial amount of S1 and observe the change in S1 as it reacts
to form S2. Figure 10.1 shows both a solid curve representing a simulation of the model,
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and four experimental data points for the concentration of S1. The first data point at time
zero represents the initial concentration of S1 which we assume is error free. Measurements
are collected at time points 0.5, 1, 2, and 3.5. The ei terms represent the difference between
the experimental data point and the simulation curve. Fitting is the process where we
attempt to adjust the parameters of the model (k1 in this case), such that the difference, ei ,
between the simulation curve and the data points is minimized.
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Figure 10.1 Model curve and experimental data plotted on the same graph. The solid line
is the simulated model, the points represent experimental data. The experimental data has
errors, ei , such that they do not exactly match the model curve. Model fitting attempts to
minimize the ei terms by adjusting the model parameter values.

Let us indicate the experimental data points using the symbols, xi and yi , where xi is
the independent variable time and yi the dependent variable. Assume there are N data
points. We will indicate the model using the expression f .xi Ip1 : : : pm/, where pi is
the i th parameter in the model. That is, for a given set of parameters and time point xi ,
the function f will return the corresponding model ymi value. If the model is a set of
differential equations, we would run a simulation in order to obtain the value of ymi at xi .
The fitting procedure will attempt to minimize the difference between the model f and the
data points, that is minimize:

yi � f .xi Ip1 : : : pm/

Because the difference between a data point and the model may be positive or negative
depending on the error in the data point (See e2 for example in Figure 10.1), we take the
square of the difference to make the term positive:

.yi � f .xi Ip1 : : : pm//
2
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This difference only corresponds to one data point, and we should be considering all data
points when trying to fit the model. Therefore we sum up all the differences and attempt to
minimize the total sum, that is:

NX
iD1

.yi � f .xi Ip1 : : : pm//
2

We can take this one step further and reason that the most uncertain data points should
contribute less to the sum compared to those which have been measured more precisely.
We therefore weight each difference by the standard deviation, � , that corresponds to that
data point. This assumes that we have some measure of uncertainty, if we don’t we set the
weight to one:

�2 �

NX
iD1

�
yi � f .xi Ip1 : : : pm

�i

�2
(10.1)

The above equation can also be expressed in the following equivalent form to emphasize
the weighing in terms of the variance, �2:

�2 �

NX
iD1

1

�2i
.yi � f .xi Ip1 : : : pm//

2

This equation is called the weighted chi-square sum of squares1 and can vary between
zero and infinity. If the model is a set of differential equations, the f function is a list of
data points from a simulation run. For example, using the previous model let us assume the
parameter k1 is set to -0.95. Table ?? shows an example of computing the chi-square given
some data points and results from a model run.

An important variant on the chi-square is the reduced chi-square (10.2) which is used
when looking at the quality of the fit and estimating the confidence in the fitted parameter.

�2reduced �
1

N � P

NX
iD1

1

�2i
.yi � f .xi Ip1 : : : pm//

2 (10.2)

N is the number of data points and P the number of parameters to be fitted in the model.
The difference N � P is called the degrees of freedom. This measure gives insight into
whether a model is over-fitted in the sense that there is much more data that parameters to
be estimated.
1The notation �2 is possibly misleading. The �2 is not the square of a quantity � and is why the term chi-
square is used rather than chi-squared. The 2 is simply to remind us of the square on the right-hand side of
the definition.
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10.3 Optimization Algorithms

A brute force method for fitting a model is to run a simulation of the model many times
with random parameter values until we find a set of parameters that gives us simulation
data that matches the experimental time series. One problem with this approach is that we
will spend a great deal of time coming up with random parameter values in the hopes that at
least one set will match the experimental data. This however is unlikely, and the brute force
method is rarely used in practice. Instead, special search algorithms have been devised,
called optimization algorithms, to search for the best set of parameters in a systematic
way.

Optimization is an iterative process. It involves making an initial guess for the parameters,
pi , computing the �2 value, and using a rule that adjusts the parameter values such that the
�2 is reduced in the next iteration. This procedure is repeated many times until the �2 can
no longer be reduced, at which point the iteration stops. If the fit was successful, the model
should be able to reproduce the experimental data given the final set of parameters.

There are many optimization algorithms to choose from and the python scipy library has a
large variety of possible optimization methods to choose from. Popular methods include:

1. Nelder and Mead

2. differential_evolution

3. Levenberg-Marquardt

These methods are described in more detail in [?]. Possibly the most important aspect of
fitting a model is the computation of the chi-square sum of squares. When computing the
chi-square for differential equation models, we must compute the time course trajectory
and determine the chi-square from the difference between the simulated time course and
the time course determined experimentally. For example, consider the simple three reaction
model shown below.

import tellurium as te

r = te.loada("""

   S1 -> S2; k1*S1;

   S2 -> S3; k2*S2;

   S1 = 1; S2 = 0; S3 = 0;

   k1 = 0.15; k2 = 0.45;

""")

Let us assume we have experimental data for the change over time in S2 given some defined
initial conditions. We can run the model using libRoadRunner and compare the experimen-
tal time course to the simulated time course. The function below gives such a function:
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def computeChiSquare(p):

    r.reset()

    for i in range(0, fit.nParameters):

        r.model[fit.toFit[i]] = p[i]

    m = r.simulate (fit.timeStart, fit.timeEnd, fit.numberOfPoints)

    a1 = y_data - m[:,2]

    return numpy.sum (a1*a1)

Let’s look at this function in detail. The first line resets the model back to it initial state. We
must do this each time because optimization is iterative and a previous call to the function
will have left the state of the simulation at the end point of the simulation. The next two
lines set up the model currently to the most recently computed values for the parameters
we wish to fit. Line four carries out the simulation and the last two lines compute the sums
of squares.
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11
Stoichiometric Analysis

11.1 Stoichiometric Analysis

libRoadRunner supports a number of method to obtained structural information about the
reaction network. The most common information to retrieve is the stoichiometry matrix.

11.1.1 Stoichiometry Matrix

import tellurium as te

rr = te.loada ('''

   var ES, S1, S2, E;

  J1: E + S1 -> ES; v;

  J2: ES -> E + S2; v;

  J3: S2 -> S1; v;

''')

print rr.getFullStoichiometryMatrix()

# Output

      J1, J2, J3

ES [[  1, -1,  0],

S1  [ -1,  0,  1],

S2  [  0,  1, -1],
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E   [ -1,  1,  0]]

11.1.2 Conservation Matrix

To obtain the conservation matrix for a model use the model method, getConservation-
Matrix. Note that in the Antimony text we use the var word to predeclare the species so
that we can set up the rows of the stoichiometry matrix in a certain order if we wish. This
allows us to obtain conservation matrices with only positive terms.

import tellurium as te

rr = te.loada ('''

   var ES, S1, S2, E;

  J1: E + S1 -> ES; v;

  J2: ES -> E + S2; v;

  J3: S2 -> S1; v;

''')

print rr.getConservationMatrix()

print rr.fs()

# Output

[[ 1.  1.  1.  0.]

 [ 1.  0.  0.  1.]]

['ES', 'S1', 'S2', 'E']

The result given above indicates that the conservation relations, ES + S1 + E and E + ES

exist in the model. As a result, Tellurium would generate two internal parameters of the
form cm corresponding to the two relations.
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