
TUPLES, LISTS,
ALIASING,
MUTABILITY, CLONING
(download slides and .py files and follow along!)

6.0001 LECTURE 5

6.0001 LECTURE 5 1

TUPLES
� an ordered sequence of elements, can mix element types
� cannot change element values, immutable
� represented with parentheses

te = ()
t = (2,"mit",3)
t[0] Æ evaluates to 2

(2,"mit",3) + (5,6) Æ evaluates to (2,"mit",3,5,6)
t[1:2] Æ slice tuple, evaluates to ("mit",)
t[1:3] Æ slice tuple, evaluates to ("mit",3)
len(t) Æ evaluates to 3

t[1] = 4 Æ gives error, can’t modify object
6.0001 LECTURE 5 4

TUPLES
� conveniently used to swap variable values

x = y temp = x (x, y) = (y, x)
y = x x = y

y = temp

� used to return more than one value from a function
def quotient_and_remainder(x, y):

q = x // y
r = x % y
return (q, r)

(quot, rem) = quotient_and_remainder(4,5)

6.0001 LECTURE 5 5

MANIPULATING TUPLES

� can iterate over tuples

def get_data(aTuple):
nums = ()
words = ()
for t in aTuple:

nums = nums + (t[0],)
if t[1] not in words:

words = words + (t[1],)
min_n = min(nums)
max_n = max(nums)
unique_words = len(words)
return (min_n, max_n, unique_words)

6.0001 LECTURE 5 6

aTuple:((),(),())

nums()
words()

if not already in words
i.e. unique strings from aTuple

? ? ?

LISTS
� ordered sequence of information, accessible by index

� a list is denoted by square brackets, []
� a list contains elements
• usually homogeneous (ie, all integers)
• can contain mixed types (not common)

� list elements can be changed so a list is mutable

6.0001 LECTURE 5 7

INDICES AND ORDERING
a_list = []
L = [2, 'a', 4, [1,2]]
len(L) Æ evaluates to 4

L[0] Æ evaluates to 2

L[2]+1 Æ evaluates to 5

L[3] Æ evaluates to [1,2], another list!

L[4] Æ gives an error

i = 2
L[i-1] Æ evaluates to ‘a’ since L[1]='a' above

6.0001 LECTURE 5 8

CHANGING ELEMENTS
� lists are mutable!

� assigning to an element at an index changes the value

L = [2, 1, 3]
L[1] = 5

� L is now [2, 5, 3], note this is the same object L

6.0001 LECTURE 5 9

L

[2,1,3][2,5,3]

ITERATING OVER A LIST
� compute the sum of elements of a list

� common pattern, iterate over list elements

� notice
• list elements are indexed 0 to len(L)-1
• range(n) goes from 0 to n-1

6.0001 LECTURE 5 10

total = 0
for i in range(len(L)):

total += L[i]
print total

total = 0
for i in L:

total += i
print total

OPERATIONS ON LISTS - ADD
� add elements to end of list with L.append(element)
�mutates the list!

L = [2,1,3]
L.append(5) Æ L is now [2,1,3,5]

� what is the dot?
• lists are Python objects, everything in Python is an object
• objects have data
• objects have methods and functions
• access this information by object_name.do_something()
• will learn more about these later

6.0001 LECTURE 5 11

modifies

OPERATIONS ON LISTS - ADD
� to combine lists together use concatenation, + operator,
to give you a new list

�mutate list with L.extend(some_list)

L1 = [2,1,3]
L2 = [4,5,6]
L3 = L1 + L2 Æ L3 is [2,1,3,4,5,6]

L1, L2 unchanged

L1.extend([0,6]) Æ mutated L1 to [2,1,3,0,6]

6.0001 LECTURE 5 12

modify

modified

OPERATIONS ON LISTS -
REMOVE
� delete element at a specific index with del(L[index])
� remove element at end of list with L.pop(), returns the
removed element

� remove a specific element with L.remove(element)
• looks for the element and removes it
• if element occurs multiple times, removes first occurrence
• if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order
L.remove(2)Æmutates L = [1,3,6,3,7,0]
L.remove(3)Æmutates L = [1,6,3,7,0]
del(L[1]) Æmutates L = [1,3,7,0]
L.pop() Æ returns 0 and mutates L = [1,3,7]

6.0001 LECTURE 5 13

modifies
modifies
modifies

modifies

CONVERT LISTS TO STRINGS
AND BACK
� convert string to list with list(s), returns a list with every
character from s an element in L
� can use s.split(), to split a string on a character parameter,
splits on spaces if called without a parameter

� use ''.join(L) to turn a list of characters into a string, can
give a character in quotes to add char between every element

6.0001 LECTURE 5 14

s = "I<3 cs" Æ s is a string
list(s) Æ returns ['I','<','3',' ','c','s']
s.split('<') Æ returns ['I', '3 cs']
L = ['a','b','c'] Æ L is a list
''.join(L) Æ returns "abc"
'_'.join(L) Æ returns "a_b_c"

OTHER LIST OPERATIONS
� sort() and sorted()
� reverse()
� and many more!
https://docs.python.org/3/tutorial/datastructures.html

L=[9,6,0,3]
sorted(L) Æ returns sorted list, does not mutate L
L.sort() Æmutates L=[0,3,6,9]
L.reverse() Æmutates L=[9,6,3,0]

6.0001 LECTURE 5 15

modify

modifies

modifies

LISTS IN MEMORY
� lists are mutable

� behave differently than immutable types

� is an object in memory

� variable name points to object

� any variable pointing to that object is affected

� key phrase to keep in mind when working with lists is
side effects

6.0001 LECTURE 5 17

ALIASES
� hot is an alias for warm – changing one changes the
other!

� append() has a side effect

6.0001 LECTURE 5 19

CLONING A LIST
� create a new list and copy every element using
chill = cool[:]

6.0001 LECTURE 5 20

SORTING LISTS
� calling sort() mutates the list, returns nothing

� calling sorted()
does not mutate
list, must assign
result to a variable

6.0001 LECTURE 5 21

modify

modifies

LISTS OF LISTS OF LISTS OF….
� can have nested lists

� side effects still
possible after mutation

6.0001 LECTURE 5 22

MUTATION AND ITERATION
Try this in Python Tutor!

� avoid mutating a list as you are iterating over it
def remove_dups(L1, L2):

for e in L1:
if e in L2:

L1.remove(e)

L1 = [1, 2, 3, 4]
L2 = [1, 2, 5, 6]
remove_dups(L1, L2)

� L1 is [2,3,4] not [3,4] Why?
• Python uses an internal counter to keep track of index it is in the loop
• mutating changes the list length but Python doesn’t update the counter
• loop never sees element 2

6.0001 LECTURE 5 23

def remove_dups(L1, L2):
L1_copy = L1[:]
for e in L1_copy:

if e in L2:
L1.remove(e)

changing

MODIFYING

