
Merging CompuCell3D and
SBW/SBML

Julio M. Belmonte

Indiana University, Bloomington

Outline
• Objectives

• Ways to add RK to CC3D

• SBML format

• Generating SBML using Jarnac
• Simple Oscillator

• Integrating with CC3D
• Adding Simple Oscillator to CC3D

• Adding Cell Cycle model from sbml.org

• John Tyson’s Cell Cycle model

• Collier et al. Delta-Notch patterning model

More on Reaction Kinetics Modeling

Essential Mathematical Biology
Nicholas Britton

Enzyme Kinetics for Systems Biology
Herbert Sauro

www.sys-bio.org/sbwWiki/tutorials/bloomington2011

http://www.sys-bio.org/sbwWiki/tutorials/bloomington2010�

Cell-based modeling

• Cellular behaviors:
• Location

• Volume

• Shape

• Movement

• Adhesion

• Mitosis

• Death

• Differentiation

• Polarization

• Etc…

Subcellular modelling

• Biochemical Kinetics:
– Cell-Cycle

– Circadian rhythms

– Cardiac rhythms

– cAMP oscillations

– Delta-Notch patterning

– WNT pathway

– FGF pathway

– Etc…

Subcellular modelling

• Biochemical Kinetics:
– Cell-Cycle

– Circadian rhythms

– Cardiac rhythms

– cAMP oscillations

– Delta-Notch patterning

– WNT pathway

– FGF pathway

– Etc…

Subcellular modelling

• Biochemical Kinetics:
– Cell-Cycle

– Circadian rhythms

– Cardiac rhythms

– cAMP oscillations

– Delta-Notch patterning

– WNT pathway

– FGF pathway

– Etc…

How to add this into CompuCell?

1) Just another Python class!
– Too slow

How to add this into CompuCell?

1) Just another Python class!
– Too slow

2) C++ file to be wrapped into Python
– Too complicated

How to add this into CompuCell?

1) Just another Python class!
– Too slow

2) C++ file to be wrapped into Python
– Too complicated

3) Import SBML

SBML – Systems Biology Markup Language

• Not a software!

• Machine-readable format for representing
subcellular models

• Standard for storage and exchange of models

• Implementation agnostic

SBML

• How does it work?

Developer software (SBW/Jarnac)

SBML

Simulation software (CompuCell3D)

SBML

21 2 SS k ⋅→
• Initial conditions:

• Parameters:

nM51 =S

1min1.0 −=k

nM02 =S

SBML
<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns = "http://www.sbml.org/sbml/level2" level = "2" version = "1">

<model id = "cell">
<listOfCompartments>

<compartment id = "compartment" size = "1"/>
</listOfCompartments>
<listOfSpecies>

<species id = "S1" boundaryCondition = "false" initialConcentration = “5.0" compartment = "compartment"/>
<species id = "S2" boundaryCondition = "false" initialConcentration = “0.0" compartment = "compartment"/>

</listOfSpecies>
<listOfParameters>

<parameter id = "k1" value = "0.1"/>
</listOfParameters>
<listOfReactions>

<reaction id = "_J1" reversible = "false">
<listOfReactants>

<speciesReference species = "S1" stoichiometry = "1"/>
</listOfReactants>
<listOfProducts>

<speciesReference species = "S2" stoichiometry = “2"/>
</listOfProducts>
<kineticLaw>

<math xmlns = "http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci>

k1
</ci>
<ci>

S1
</ci>

</apply>
</math>

</kineticLaw>
</reaction>

</listOfReactions>
</model>

</sbml>

21 2 SS k ⋅→

nM51 =S
1min1.0 −=k

nM02 =S

SBML

• Total number of known SBML-compatible
software packages each year :

How to write SBML?

• Bio-Spice
• Large collection of tools, integrated via a "Dashboard." Free

download (BSD), various platforms.

• Teranode
• Suite of tools for model management, design, and simulation.

(Linux/Mac/Windows) Commercial (30-day trial available).

• SBW
• Systems Biology Workbench.

• Check http://sbml.org/SBML_Software_Guide

http://biospice.sf.net/�
http://www.teranode.com/products/index.php�
http://sbw.kgi.edu/sbwWiki/doku.php?id=sysbio:sbw�
http://sbml.org/SBML_Software_Guide�

SBW/Jarnac

• SBW - Systems Biology Workbench:
– Open-source software framework for systems biology

• Jarnac:
– Software for writing and simulating reaction kinetics

– Easy to use

– Translate to SBML (C++, Matlab, Mathematica, etc..)

• Download at: http://www.sys-bio.org/

http://www.sys-bio.org/�

Integration with CC3D

• Reaction kinetic models can be easily added in
CC3D when in SBML format.

• Once loaded, the model is converted into a set of
ODEs and is solved by the BionetSolver library
inside CC3D.

• The commands used to load and manipulate the
models inside CC4D are summarized on the
“Quick Reference Guide” for Python in CC3D.

Integration with CC3D
import bionetAPI # Import bionetAPI functions
class <someClass>(SteppableBasePy):

def __init__(self,_simulator,_frequency=1):
SteppableBasePy.__init__(self,_simulator,_frequency)
bionetAPI.initializeBionetworkManager(self.simulator) # Initialize bionet inside class

def start(self):
Load a specific subcellular SBML submodel
ModelName = <sbmlModelName> # Name of the model
ModelPath = <sbmlModelPath> # Path where the model is stored
ModelKey = <modelKey> # Nickname of the model
IntegrationStep = <timeStep> # Time step of integration
bionetAPI.loadSBMLModel(ModelName, ModelPath, ModelKey, IntegrationStep)

Add SBML submodel to a group of cells or a single cell
bionetAPI.addSBMLModelToTemplateLibrary(<sbmlModelName>, {<cellType> or <cellId>})
…
Modify the parameter value or molecular concentration of a cell (or group of cells)
bionetAPI.setBionetworkValue(<molecule/parameter>, <value>, {<cellType> or <cellId>})
…
Initialize model
bionetAPI.initializeBionetworks()

def step(self,mcs):
Iterate the model (run it for the time step specified on the load command)
bionetAPI.timestepBionetworks()
…
Get the parameter value or molecular concentration from a cell (or group of cells)
<var>=bionetAPI.getBionetworkValue({<parameter> or <molecule>},{<cellType> or <cellId>})
…
Modify the parameter value or molecular concentration of a cell (or group of cells)
bionetAPI.setBionetworkValue(<molecule/parameter>, <value>, {<cellType> or <cellId>})

First Example – Simple Oscillator

First Example – Simple Oscillator

There is no sbml file

in the directory

You will create it

First Example – Simple Oscillator

• Relaxation oscillator:

22
2

2
1max11

2

2

2
1max110

1

15

15

Vk
V

VVVVk
dt

dV
V

VVVVkk
dt

dV

n

n

n

n

⋅−
+

⋅+⋅=

+
⋅−⋅−=

First Example – Simple Oscillator

• Load your old exercise in Jarnac Lite.

• If you don’t have it, it can be written as:

• Note that should be written as pow(V2,n)nV2

First Example – Simple Oscillator

• Click on the Simulation Tool icon:

First Example – Simple Oscillator
• The parameter values give oscillations (set TimeEnd to 1000):

Simple Oscillator
• But the oscillations cease if n is changed to 2:

First Example – Simple Oscillator

• Go back to Jarnac Lite, click on SBW:

First Example – Simple Oscillator

• Then click on Translate SBML --> Any:

First Example – Simple Oscillator

First Example – Simple Oscillator
• Save it as “SimpleOscillator.sbml” inside:

CompuCell3D\DemosBionetSolver\SimpleOscillator

First Example – Simple Oscillator
• The SimpleOscillator.py file contains the parameters of the

cellular model.

• It is important to note that in this model there are 2 cell
types: “TypeA” and “TypeB”

First Example – Simple Oscillator
• The SimpleOscillator.py file calls 3 steppables:

– InitCond: where the initial conditions are set

– Oscillator: where the SBML model will be loaded

– ExtraFields: used to visualize one of the model’s variable

First Example – Simple Oscillator
• Let’s open the SimpleOscillator_Step.py file and look at the

beginning of the Oscillator steppable:

First Example – Simple Oscillator
• The first thing to be done is to import the BionetSolver

library by this command:

First Example – Simple Oscillator
• Next, inside the steppable, we initialize the solver by using

this command:

First Example – Simple Oscillator
• Once the BionetSolver is loaded and initialized, it is time

to load the model:

First Example – Simple Oscillator
• This takes 4 parameters:

– First is the model name:

– For convenience the name will be SimpleOscillator, but it can be
anything.

First Example – Simple Oscillator
• This takes 4 parameters:

– Second is the model pathway:

– os.getcwd() gives the CompuCell3D root directory.

– Here it is crucial that the correct path and model name are given.

First Example – Simple Oscillator
• This takes 4 parameters:

– Third is the model nickname:

– This is used as an abbreviation of the model name when
referring to parameters of this model.

First Example – Simple Oscillator
• This takes 4 parameters:

– And the last one is the size of the integration step:

– This specifies the correspondence between MCS and the unit of
time of the model.

First Example – Simple Oscillator
• Now we have to add this model to the cells in our

simulation:

– The first line add the SimpleOscillator model to all cells of type
“TypeA”, and the second to all cells of type “TypeB”.

First Example – Simple Oscillator
• Finally, we initialize the SBML model in each cell by using

the following command:

• On the step function we create a dictionary where the two
variables of the SimpleOscillator will be stored:

First Example – Simple Oscillator

• To extract the current value of a variable or parameter
from the SBML model inside the cell, we use the
command:

– Where the first parameter indicate the model (by its nickname)
followed by a underscore “_” and the name of the variable.

– The second parameter indicate the cell from which this
information will be extracted.

First Example – Simple Oscillator

• The last command runs the SBML model inside each cell
for one time step of integration:

– If this command is not called, the ODE model will not run and all
variables will stay at their initial values.

First Example – Simple Oscillator

• Next, open the file SimpleOscillator.py on the CC3D
player.

First Example – Simple Oscillator

• Hit the “step” button, as indicated below, to run the simulation just
one MCS.

First Example – Simple Oscillator

• Click the indicated button to open a new graphics window and
select V1 in place of Cell_field in it:

First Example – Simple Oscillator

• Next go to Tools -> Configuration, and under “Colormap Plot”, fix the
maximum range at 2.5:

First Example – Simple Oscillator

• When you run the simulation, the second graphics window should
display an oscillating V1 concentration similar to this:

First Example – Simple Oscillator

• In the last example both cell types, “TypeA” and
“TypeB”, had exactly the same oscillator with the
same parameters and initial conditions.

• In this second example we are going to assign the
same SBML model to both cell types, but change
the parameter “n” for one of them.

Second Example – Simple Oscillator 2

• To do this, uncomment the following line from the
steppable file SimpleOscillator_Step.py:

Second Example – Simple Oscillator 2

• As a result, cells of type “TypeB” will cease to oscillate:

Second Example – Simple Oscillator 2

• In our third example, instead of building our own
SBML model, we are going to use an existing one.

• The website www.sbml.org contains a repository
of published models in SBML format.

• If you wish to submit your own SBML to the
repository, follow the instructions at:
www.ebi.ac.uk/biomodels-main/submit

Third Example – Cell Cycle from web

http://www.sbml.org/�
http://www.ebi.ac.uk/biomodels-main/submit�

• To access the SBML model repository click on the link
“BioModels Database” and then on “Curated models”:

Third Example – Cell Cycle from web

• From the model list select the third one by clicking on the
link under the column “BioModels ID”

Third Example – Cell Cycle from web

• To download the model click on “Download SBML” and
select “SBML L2 V4 (curated)”

Third Example – Cell Cycle from web

• Save the file BIOMD0000000003.xml inside the directory
CompuCell3D\DemosBionetSolver\CellCycle\

Third Example – Cell Cycle from web

• This model is composed of 3 ODEs that forms an oscillating system:

– C : cyclin concentration

– M : fraction of active cdc2 kinase

– X : fraction of active cyclin protease

Third Example – Cell Cycle from web

• The model is implemented into CC3D in the same ways as
in the first example, but this time we just have 1 cell type:

Third Example – Cell Cycle from web

• According to the original paper, mitosis happens after the
fraction of active cdc2 kinase (M) reaches its maximum at
around 0.7.

• To implement this we store the value of M at each MCS
and the previous MCS:

Third Example – Cell Cycle from web

• Then, inside the Mitosis steppable, we check if the cell’s
internal fraction of M crosses the 0.7 threshold:

Third Example – Cell Cycle from web

• Inside the updateAtrributes function, we must copy the
SBML model network from the parent to the child:

• But before doing this, we must assign a cell type to the
child cell:

Third Example – Cell Cycle from web

• Next, open the model in CC3D, set the maximum
concentration of the “Colormap Plot” to 0.75, and run the
simulation:

Third Example – Cell Cycle from web

• In the last example all cells divided in synchrony.

• The reason for this is the absence of any flow of
information from the cell level to the subcellular
level that would alter the state of the cell cycle
oscillations.

• A more realistic model, where the cells do not
maintain their cell cycle’s phase, is the one
proposed by Tyson and Novak.

Fourth Example – Tyson’s Cell Cycle

• This model has 5 variables, from which only the
first 2 forms the core of the cell cycle oscillations:

Fourth Example – Tyson’s Cell Cycle

• The crucial difference from the previous model lies in the
presence of the parameter “m”, which is the normalized
total mass of the cell:

• This parameter varies between ~0.5 (right after mitosis)
and ~1 (at normal size) and corresponds in CC3D to the
ratio of volume to target volume:

Fourth Example – Tyson’s Cell Cycle

targetσ VV

• In the steppable file, CellCycle_Tyson_Step.py, this is
implemented as:

• Where “self.tV” is a variable which contains the original
target volume of the cells and is passed into the steppable
class from the main Python file.

Fourth Example – Tyson’s Cell Cycle

• This passage of variables is done in the following way:
– At the beginning of the CellCycle_Tyson.py file I declare and

define global variables, from which tV – target volume – is one:

Fourth Example – Tyson’s Cell Cycle

• This passage of variables is done in the following way:
– Later, when the steppable is called, the variable is passed as an

argument:

– And in the CellCycle_Tyson_Step.py file, the argument is stored in
the following way:

– The storage of the parameter as self.tV is necessary for it to be
accessible to all functions inside the class.

Fourth Example – Tyson’s Cell Cycle

• We went through all this trouble because the right way to
implement cell growth in CC3D is by gradual increases in its target
volume after mitosis:

• If we keep the target volume (Vt) constant after mitosis, instead of
resetting it to the actual cell volume (V), the difference between V
and Vt would be too great, leading to unrealistic cell dynamics.

Fourth Example – Tyson’s Cell Cycle

• Back to Tyson’s cell cycle model.

• Here, the criteria for cell division is a low level of
cycling B variable.
– Once cycling B drops below a concentration of 0.1

grams of protein per gram of total cell mass, the cell
undergoes mitosis

Fourth Example – Tyson’s Cell Cycle

• When we run this model we can see that due to the
fluctuations in cell volume, the divisions get out of sync:

Fourth Example – Tyson’s Cell Cycle

• The fourth example (Tyson’s cell cycle model)
illustrated how changes at the single cell level can
affect the subcellular level (and in turn affect the
cell behavior by initiating mitosis).

• This last example will show how conditions
external to the cell (the neighboring cells’ Delta)
can affect the cell internal state (its Notch levels).

Fifth Example – Delta-Notch Patterning

• We will use the model published by Collier et al. in 1996:

–
– N : Notch

– D : Delta

– D: average Delta from neighbors

Fifth Example – Delta-Notch Patterning

N
Da

D
dt
dN

N
Nb

v
dt
dD

k

k

h

−
+

=

 −

⋅+
⋅=

1
1

• In this model, when a cell receives high levels of
Delta from neighbors its Notch level becomes
downregulated.

• This leads to the high/low Notch patterning shown
by their simulations on an hexagonal lattice:

Fifth Example – Delta-Notch Patterning

• In CC3D we first loop over all cells’ neighbors and store their Delta:

• Then we average it and use it as the new D parameter of that cell:

Fifth Example – Delta-Notch Patterning

• As an initial condition all cells start with random values of
Delta and Notch around 0.9.

• To implement this we use the Python random function as
shown below:

Fifth Example – Delta-Notch Patterning

• When we run this model we can see that first the Notch
values go down before the pattern emerges:

Fifth Example – Delta-Notch Patterning

• If we increase the level of membrane fluctuations the
pattern will be disrupted :

Fifth Example – Delta-Notch Patterning

• Below is a simulation with Tyson’s Cell Cycle and Collier’s
Delta Notch models:

Sixth Example – 2 ODE models

	Merging CompuCell3D and SBW/SBML
	Outline
	More on Reaction Kinetics Modeling
	Cell-based modeling
	Subcellular modelling
	Subcellular modelling
	Subcellular modelling
	How to add this into CompuCell?
	How to add this into CompuCell?
	How to add this into CompuCell?
	SBML – Systems Biology Markup Language
	SBML
	SBML
	SBML
	SBML
	How to write SBML?
	SBW/Jarnac
	Integration with CC3D
	Integration with CC3D
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	First Example – Simple Oscillator
	Second Example – Simple Oscillator 2
	Second Example – Simple Oscillator 2
	Second Example – Simple Oscillator 2
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Third Example – Cell Cycle from web
	Fourth Example – Tyson’s Cell Cycle
	Fourth Example – Tyson’s Cell Cycle
	Fourth Example – Tyson’s Cell Cycle
	Fourth Example – Tyson’s Cell Cycle
	Fourth Example – Tyson’s Cell Cycle
	Fourth Example – Tyson’s Cell Cycle
	Fourth Example – Tyson’s Cell Cycle
	Fourth Example – Tyson’s Cell Cycle
	Fourth Example – Tyson’s Cell Cycle
	Fifth Example – Delta-Notch Patterning
	Fifth Example – Delta-Notch Patterning
	Fifth Example – Delta-Notch Patterning
	Fifth Example – Delta-Notch Patterning
	Fifth Example – Delta-Notch Patterning
	Fifth Example – Delta-Notch Patterning
	Fifth Example – Delta-Notch Patterning
	Sixth Example – 2 ODE models

