
Maciej Swat

Biocomplexity Institute

Indiana University

Bloomington, IN 47405

USA

IU Team: Susan Hester, Julio Belmonte, Abbas Shirinifard, Ryan Roper, Alin Comanescu,

Benjamin Zaitlen, Randy Heiland, Dr. Dragos Amarie, Dr. Scott Gens, Dr. James A. Glazier, Dr.

James Sluka, Dr. Sherry Clendenon, Dr. Mitja Hmeljak, Dr. Srividhya Jayaraman, Dr. Gilberto

Thomas

Support: EPA, NIH/NIGMS, NAKFI, Indiana University

Developing Multi-Scale, Multicell Developmental and Biomedical

Simulations with CompuCell3D

RTP, NC, 2012

July 30th-August 3rd 2012

Introduction to CompuCell3D

What will you learn during the workshop?

1. What is CompuCell3D?

2. Why use CompuCell3D?

3. Demo simulations

4. Glazier-Graner-Hogeweg (GGH) model – review

5. CompuCell3D architecture and terminology

6. XML 101. CC3DML-intro

7. Building Your First CompuCell3D simulation

8. Visualization – CompuCell Player

9. Python scripting in CompuCell3D

10.Building C++ CompuCell3D extension modules – for interested participants

What Is CompuCell3D?

1. CompuCell3D is a modeling environment to build, test, run and visualize

multiscale, multi-cell GGH-based simulations.

2. CompuCell3D has built-in stanadard scripting language (Python) that allows

users to quite easily write extension modules that are essential for building

sophisticated biological models.

3. CompuCell3D thus is NOT a hard-coded simulation of a specific biological

system.

4. Running CompuCell3D simulations DOES NOT require recompilation.

5. CompuCell3D models described using CompuCell3D XML and Python script(s).

6. CompuCell3D platform is distributed with a GUI front end – CompuCell Player

for 2- Dand 3-D visualization and simulation replay.

7. CompuCell3D provides a specialized model editor (Twedit) and initial condition

generator (PifTracer).

8. CompuCell3D is a cross platform application that runs on Linux/Unix, Windows,

Mac OSX.

9. CompuCell3D simulations can be easily shared and combined.

Model Specification

User
CC3D

Player

Scheduler

Reaction

Kinetics

Solvers

(SoSLib)

Multicell (GGH)

PDE (Solvers)

Python Scripts

Your Modules

Here

Output

Modules

Steering

Tool

FE Solvers

PIFTracer

ModelEditor

CC3DML

Scripts

Python and

PyLibraries

SBW Tools

SBML Scripts

Key

User Defined

CC3D Open Source

Freestanding Beta

Version
Under

Development

3rd Party Open Source

Experimental

Microscopy Images

CC3D Architecture

Why Use CompuCell3D? What Are the Alternatives?

1. CompuCell3D allows users to set up and run their simulations in minutes to

hours rather than weeks to months for custom code.

2. Most CompuCell3D simulations DO NOT need to be recompiled. To change

parameters (in XML or Python scripts) or logic (in Python scripts) you just make

the changes in the script or on the fly and run. Recompilation of hard-coded

simulation is error prone and is accessible only to users with significant

programming background.

3. CompuCell3D is actively developed , maintained and supported. The

www.compucell3d.org website provides manuals, tutorials and developer

documentation. CompuCell3D has approx. 4 releases each year .

4. CompuCell3D has many users around the world, faciltiating collaboration and

module exchange, saving time when developing new models.

5. The Biocomplexity Institute organizes training workshops and mentorship

programs. Those are great opportunities to learn biological modeling using

CompuCell3D. For more info see www.compucell3d.org

1. 99% of modeling done with custom written code is hard or impossible to reproduce or

verify. In publications ,even ones including full code listings, authors often forget to

describe details which are essential to reproducing their described work.

2. Using standard modeling tools improves the chances of your research being

accepted and further refined by other scientists.

3. Standards allow people to spend more time working on new ideas and less

struggling to reproduce old results .

4. Standards greatly improves research efficiency.

5. Bug tracking and detection are much more efficient with shared tools than with

custom written ones. Bugs are also better documented for shared software.

6. Developing and sharing modules with other researchers is the best way to improve

software modeling tools used by the research community.

Why are model sharing and standards important?

Demo CompuCell3D Simulations

Key properties:

Cells live on a lattice.

Each cell occupies many lattice sites.

Each cell has a unique index.

Each cell has a type—can have many cells of each type. E.g. a simple cell

sorting simulation has many cells of type “Condensing” and many of type

“NonCondensinig”

Review of the GGH Model

The GGH Model Formalism Overview

•Configuration of Cells Evolves to Locally Minimize the Effective Energy, primarily by

satisfying constraints) (Graner and Glazier, 1992)

•Key concept is differential adhesion between components: Contact energy

depending on cell types (differentiated cells)

           

       ...

)'(),(1))'(()),((

2

Target

2

Target

neighbors
',









haptchemv

s

xx

EEVv

SsxxxxJE












(x) –denotes id of the cell

occupying position x. All pixels

pointed to by the arrow have same

cell id, and belong to the same cell

((x)) denotes the cell type of cell with id (x). In the

picture above blue and yellow cells have different cell

types and different cell id. Arrows mark different cell types

The GGH Model Formalism Overview—Dynamics

•To simulate the cytoskeleton-driven extension and retraction of cell membranes

(including pseudopods, filopodia and lamellipodia). The GGH algorithm tries

randomly to extend and retract cell boundaries one pixel at a time.

•At each attempt, it calculates the new configuration Effective Energy and accepts

the new configuration according to the Metropolis algorithm: probability of

configuration change

•Result is movement with velocity proportional to the gradient of the Energy (or

linear in the applied force).

•Configurations evolve to satisfy the constraints.

•When constraints conflict, evolve to balance errors.

invalid attempt valid attempt accept

valid attempt accept

valid attempt accept

valid attempt

reject

More Detail on Pixel Copy Attempts

CompuCell3D Terminology and Relation to GGH

CompuCell has two basic time scales a fast scale and a slow scale:

Fast Scale:

• A Pixel-copy attempt is an event where program randomly picks a lattice

site and attempts to copy the pixel to a neighboring lattice site.

• CompuCell3D Plugins either calculate terms in the Effective Energy or

implement actions in response to accepted pixel copies (Lattice Monitors).

Most Plugins are coded in C++ for speed.

Slow Scale:

• A Monte Carlo Step (MCS) consists of a number of pixel-copy attempts.

equal to the number of lattice sites.

• CompuCell3D Steppables at the end of each MCS and at the beginning and

end of simulations. Most customizations of CompuCell3D simulations use

user-written Python Steppables

During pixel copy

“blue” pixel (newCell) replaces

“yellow” pixel (oldCell)

Change pixel

MCS 21

10000 pixel-

copy attempts

MCS 22 MCS 23 MCS 24

10000 pixel-

copy attempts
10000 pixel-

copy attempts
10000 pixel-

copy attempts

Run

Steppables

Run

Steppables

Run

Steppables

100x100x1 square lattice = 10000 lattice sites (pixels)

CompuCell3D Terminology – Visual Guide

5

1

1

1

1

2

2 2

2

3

3

3

3

4

4

4

4 4

4

4
4

5

5 5

Nearest neighbors in 2D and their Euclidian distances from the central pixel

Nearest Neighbor Order Number of nearest

neighbors

Euclidian distance – square

lattice

1 4 1

2 4 2

3 4 2

4 8 5

5 4 8

Pixel copies could take place between any order neighbors.

In practice we use only the few first neighbors (1-4).

To specify a pixel-copy range of 2 in a simulation insert the CC3DML command :

<NeighborOrder>2</NeighborOrder>

In the <Potts></Potts> section of the simulation .

Contact energy calculations have their range specified separately

To specify an interaction range of 3 in a simulation insert the CC3DML command :

<NeighborOrder>3</NeighborOrder>

In the <Plugin Name="Contact"> </Plugin> section of the simulation .

Hexagonal Lattices

2D Square Lattice 2D Hexagonal Lattice

Neighbo

r Order

Number of

Neighbors

Euclidian

Distance

Number of

Neighbors

Euclidian

Distance

1 4 1 6

2 4 6

3 4 2 6

4 8 12

3/2

2 3/6

3/8

14 / 35

To reduce intrinsic lattice anisotropy of the square lattice, we can use a hexagonal

lattice Instead.

The area/volume of each pixel is fixed to 1, so the length scale changes when you

move from square to hex lattices.

To specify a simulation on a hex lattice, insert the CC3DML command :

<LatticeType>Hexagonal</LatticeType>

In the <Potts></Potts> section of the simulation .

WARNING: a few functions may still not

work properly for hex lattices.

Cell Sorting—The Simplest Model

16

Model Elements

Object

Properties

& Interactions

Dynamics

(Processes)

Initial

Conditions

Objects

Simulate the evolution of a randomly

mixed aggregate of two mesenchymal

cell types due to Differential Adhesion

and random cell motility.

Question—how does the outcome

depend on the relative adhesion

energies between the cell types and

between the cells and medium?

Cell Sorting—The

Simplest Model

Biological

Observations

• Properties, Behaviors:

– Cells have Fixed Volumes and Fixed Membrane Areas

– Medium has Unconstrained Volume and Surface Area

– Cells are Adhesive

– Cells have Intrinsic Random Motility

• Interactions:

– Cells Adhere to each other and to Medium with an Energy/Area
which Depends on Cell Type (simulating different types or
densities of cadherins on each Cell Type)

Cell Sorting—The Simplest Model

Define Qualitative Verbal Model
• Objects: Cells, Medium (Generalized Cell)

• Dynamics:

– Standard Potts Dynamics

• Initial Conditions:

– Cells in a Blob Surrounded by Medium

– In Blob, Cells Randomly Mixed

Cell Sorting—The Simplest Model

Refine Description to be Quantitative
Three Cell Types: More Cohesive, Less Cohesive, Medium

Random Blob Initial Conditions or

Adjacent Domains

Outcome Depends on Js

    

  














2

targetvolume

neighbors
,

)(),(1))(()),((

VV

iiiiJH
ii




•Simulations are usually described using XML-based

CC3DML and Python.

•For simple simulations CC3DML is sufficient. For more

sophisticated ones you DO NEED Python.

•CompuCell3D distributions include many examples which

you may use as a starting point for your simulations.

• Twedit++-CC3D allows users to autogenerate complex

simulations within few seconds. We will use Twedit++-

CC3D throughout the workshop.

Describing CompuCell3D simulations

•Specify basic simulation properties such as lattice

dimension, cell membrane fluctuation amplitude , initial

conditions etc…

•List all cell types

•List chemical fields (if any)

•Choose cellular behaviors and constraints

Using Twedit++-CC3D to Autogenerate

Simulation Code Based on Top-Level

Specifications

Using Twedit++-CC3D part 1

•From CC3D Project menu select New Simulation Wizard…

•Type name of the simulation and choose languages which will describe –

default choice is fine

NOTICE: The simulation will

be stored in

C:\CC3DProjects\Cellsorting

Using Twedit++-CC3D part 2

•Specify lattice dimensions, cell motility, number of MCS, initial conditions,

lattice type, pixel copy distance

Using Twedit++-CC3D part 3

•List cell types

Using Twedit++-CC3D part 4

•Choose cell behaviors and constraints. For cell sorting simulation we

chose adhesive behaviors (implemented in the Contact module) and cell

volume constraint (implemented in VolumeFlex module)

Using Twedit++-CC3D part 5

•Go to the last Wizard screen and click Finish. The simulation code will be

generated. Now we have to manually edit parameters…

Using Twedit++-CC3D part 6

•Double click on project icon in the left panel to open simulation scripts. Go to

Cellsorting.xml to fine tune cellular behaviors.

Using Twedit++-CC3D part 7

•To run generated simulation – right-click on project icon and choose

“Open in Player”.

We define Simulation using a script written in

CompuCell3D Markup Language (CC3DML)

Cell

First: Define Lattice and Simulation Dynamics Parameters

< CompuCell3D>

 <Potts>

 <Dimensions x=“100" y=“100" z=“1"/>

 <Steps>10000</Steps>

 <Temperature>2</Temperature>

</Potts>

…

</CompuCell3D>

Cell Sorting - walk through the code

Cell

<Plugin Name="CellType">

 <CellType TypeName="Medium" TypeId="0"/>

 <CellType TypeName=“Light" TypeId="1"/>

 <CellType TypeName=“Dark" TypeId="2"/>

 </Plugin>

Note that Medium has TypeId =0. This is a

REQUIREMENT in CompuCell3D.

TypeIds must be consecutive integers.

Next, List all the Objects (here only cell types) in the

simulation

<Plugin Name="Volume">

<TargetVolume>25</TargetVolume>

<LambdaVolume>1.0</LambdaVolume>

</Plugin>

 <Plugin Name="Contact">

 <Energy Type1="Medium" Type2="Medium">0

 </Energy>

 <Energy Type1="Light" Type2="Medium">16

 </Energy>

 <Energy Type1="Dark" Type2="Medium">16

 </Energy>

 <Energy Type1="Light" Type2="Light">16.0

 </Energy>

 <Energy Type1="Dark" Type2="Dark">2.0

 </Energy>

 <Energy Type1="Light" Type2="Dark">11.0

 </Energy>

 </Plugin>

Cell

Volume
volume

volumeEnergy(cell)

Contact
contactEnergy(

 cell1, cell2)

List object properties, behaviors and interactions

Cell Sorting—The Simplest Model

Implement Choices as Simulation

<Plugin Name="Volume">

<TargetVolume>25</TargetVolume>

<LambdaVolume>1.0</LambdaVolume>

</Plugin>

...)(... 2  VvE volume

...)(... 2   VvE volume

 <Plugin Name="Volume">

 <VolumeEnergyParameters CellType="Light" LambdaVolume="2.0" TargetVolume="25"/>

 <VolumeEnergyParameters CellType="Dark" LambdaVolume="2.0" TargetVolume="25"/>

 </Plugin>

Mapping of CC3DML Syntax to Volume Constraint

Specifying Volume constraint for each cell type:

<Plugin Name=“Surface">

<TargetSurface>25</TargetSurface>

<LambdaSurface>1.0</LambdaSurface>

</Plugin>

...)(... 2  SsE surface

...)(... 2   SsE surface

 <Plugin Name=“Surface">

 <SurfaceEnergyParameters CellType="Light" LambdaSurface="2.0" TargetSurface="25"/>

 <SurfaceEnergyParameters CellType="Dark" LambdaSurface="2.0" TargetSurface="25"/>

 </Plugin>

Mapping of CC3DML Syntax to Surface Constraint

Specifying Surface constraint for each cell type:

 <Plugin Name="Contact">

 <Energy Type1="Medium" Type2="Medium">0

 </Energy>

 <Energy Type1="Light" Type2="Medium">16.0

 </Energy>

 <Energy Type1="Dark" Type2="Medium">16.0

 </Energy>

 <Energy Type1="Light" Type2="Light">16

 </Energy>

 <Energy Type1="Dark" Type2="Dark">2.0

 </Energy>

 <Energy Type1="Light" Type2="Dark">11.0

 </Energy>

 </Plugin>

...)1(...
',

)'(),())'(()),(( 
xx

xxxxJE  

You must specify a Contact Energy between each pair of cell types.

Contact Energies can be negative

A smaller Contact Energy represents stronger adhesion

Mapping of CC3DML Syntax to Contact Energy Equation

Using built-in UniformInitializer Steppable:

 <Steppable Type="UniformInitializer">

 <Region>

 <BoxMax x="80" y="80" z="1"/>

 <BoxMin x="20" y="20" z="0"/>

 <Gap>0</Gap>

 <Width>5</Width>

 <Types>Light,Dark</Types>

 </Region>

 </Steppable>

CompuCell3D provides a number of ways to create initial cell configurations .

UniformInitializer runs only once, at the beginning of a simulation and creates a

rectangular slab of the specified cell types (Light and Dark).

Define Initial Conditions (rectangular slab of cells)

x,y=(100,100)

x,y=(0,0)

 <Steppable Type="UniformInitializer">

 <Region>

 <BoxMax x="80" y="80" z="1"/>

 <BoxMin x="20" y="20" z="0"/>

 <Gap>0</Gap>

 <Width>5</Width>

 <Types>Light,Dark</Types>

 </Region>

 </Steppable>

Define Initial Conditions (rectangular slab of cells) details:

Position of slab corners. Notice

that in 2D max position of z

coordinate has to be at 1 not

zero. This is because 2D lattice is

in fact 3D lattice with z dimension

set to 1!

Separation between Adjacent Cells in

Pixels (here 0)

Initial edge length of each square Cell

List of Cell Types to Include. If a Cell Type is repeated, the

fraction of that Cell Type is proportional to the number of times

it is listed

Using built-in cell field BlobInitializer Steppable:

<Steppable Type="BlobInitializer">

 <Region>

 <Radius>30</Radius>

 <Center x="40" y="40" z="0"/>

 <Gap>0</Gap>

 <Width>5</Width>

 <Types>Dark,Light</Types>

 </Region>

</Steppable>

CompuCell3D provides a number of ways to create initial cell configurations .

BlobInitializer runs only once, at the beginning of a simulation and creates a rough

circle of the specified cell types.

NOTE: In the on-line code Dark cells are called Condensing and Light cells

NonCondensing

Define Initial Conditions (circular blob of cells)

Position of Center of Disk of Cells

<Steppable Type="BlobInitializer">

 <Region>

 <Radius>30</Radius>

 <Center x="40" y="40" z="0"/>

 <Gap>0</Gap>

 <Width>5</Width>

 <Types>Dark, Light</Types>

 </Region>

</Steppable>

Radius of Disk of Cells

Separation between Adjacent Cells in

Pixels (here 0)

Initial edge length of each square Cell

List of Cell Types to Include. If a Cell Type is repeated, the

fraction of that Cell Type is proportional to the number of times

it is listed

Define Initial Conditions (circular blob of cells) details:

<CompuCell3D>

 <Potts>

 <Dimensions x="100" y="100" z="1"/>

 <Steps>10</Steps>

 <Temperature>10</Temperature>

 <NeighborOrder>2</NeighborOrder>

 </Potts>

 <Plugin Name="CellType">

 <CellType TypeName="Medium" TypeId="0"/>

 <CellType TypeName=“Light" TypeId="1"/>

 <CellType TypeName=“Dark" ="2"/>

 </Plugin>

<!– Replaced by-type constraint with global one -->

 <Plugin Name="Volume">

 <TargetVolume>25</TargetVolume>

 <LambdaVolume>1.0</LambdaVolume>

</Plugin>

 <Plugin Name="Contact">

 <Energy Type1="Medium" Type2="Medium">0

 </Energy>

 <Energy Type1="Light" Type2="Medium">16

 </Energy>

 <Energy Type1="Dark" Type2="Medium">16

 </Energy>

 <Energy Type1="Light" Type2="Light">16

 </Energy>

 <Energy Type1="Dark" Type2="Dark">2.0

 </Energy>

 <Energy Type1="Light" Type2="Dark">11

 </Energy>

 </Plugin>

 <Steppable Type="UniformInitializer">

 <Region>

 <BoxMin x="20" y="20" z="0"/>

 <BoxMax x="80" y="80" z="1"/>

 <Gap>0</Gap>

 <Width>5</Width>

 <Types>Light,Dark</Types>

 </Region>

 </Steppable>

</CompuCell3D>

The same simulation in C/C++/Java/Fortran would take at least 1000 lines

of code…

Putting It All Together - cellsort_2D.xml

Steering bar allows users to start or pause the

simulation, zoom in , zoom out, to switch between

2D and 3D visualization, change view modes (cell

field, pressure field , chemical concentration field,

velocity field etc..)

Player can output multiple

views during single

simulation run – Add

Screenshot function

Information bar

Running Cell Sorting Simulation in CompuCell Player

Go to File->Open Simulation File and navigate to C:/CC3DProjects/Cellsorting directory.

From this directory choose Cellsorting.cc3d project file.

Opening cell sorting simulation in CompuCell Player

Most of Player’s configuration options are accessible through Tools-

>Configuration… and Visualization menus.

Configuring the Player

Visualization Menu allows you to choose whether in 2D cell borders should be

displayed or not (in 3D borders are not drawn at all). You can also select to draw

isocontour lines for the concentration plots and turn on and off displaying of the

information about minimum and maximum concentration.

Screen update frequency is a parameter that defines how often (in units of MCS)

Player screen should be updated. Note, if you choose to update screen too often

(say every MCS) you will notice simulation speed degradation because it does take

some time to draw on the screen. You may also choose not to output any files by

checking “Do not output results” check-box. Additionally you have the option to

output simulation data in the VTK format for later replay.

Screenshot frequency determines how often screenshots of the lattice views will be

taken (currently Player outputs *.png files) .

Screenshots are taken every “Screenshot Frequency” MCS

By default Player will store screenshots of the currently displayed lattice view.

In addition to this users can choose to store additional screenshots at the same time.

Simply switch to different lattice view, click camera button. Those additional

screenshots will be taken irrespectively of what Player currently displays.

Once you selected additional screenshots it is convenient to save screenshot

description file (it is written automatically by the Player, user just provide file name).

Next time you decide to run CompuCell3D you may just use command

compucell3d.sh -s screenshotDesctiptionFile_cellsort.txt -i cellsort_2D.xml

This will run simulation where stored screenshots will be taken

Screenshots

Click camera button

on select lattice views
Notice, you may change

plot types as well

When you picked lattice views,

you may save screenshot

description file for later reuse

Click here to change

color for cell type 1

Enter cell type number

here

Click here to change

cell border color

Click here to change

isocontour color

To enter new cell type

click “Add Cell Type”

button

Configuring cell type colors

Sometimes when you open up the simulation and switch to 3D view you may find that your

simulation looks like solid a parallelepiped. This might be due to a box made out of frozen

cells that hides inside other cells. In this case you need to make the box invisible.

Type cell type number that you want to be invisible in 3D in this box. Notice, by

default Player will not display Medium (type 0). Here we also make types 4 and 5

invisible

Configuring cell types invisible in 3D visualizations

CompuCell3D Player will allow you to change most of the parameters of the XML file

while the simulation is running.

Use steering panel to change simulation

parameters. Make sure you pause

simulation before doing this

Target volume = 100
Screenshot was taken before simulation had

time to equilibrate

Target volume = 25

Steering the simulation

Exploring how different parameters affect cellular behaviors

in cell sorting simulation

1. Vary cell membrane fluctuation amplitude (aka temperature)

2. Vary LambdaVolume, TargetVolume

3. Vary Contact Energy coefficients

Please refer to the Quick start guide to find set of exercises which will help you better

understand the roles played by all parameters

Basic facts:

•Cells that have high contact energies between themselves, when they come together

they increase overall energy of the system. Such cells tend to stay away from each

other.

•Cells that have low contact energies between themselves, when they come together

they decrease overall energy of the system. Such cells tend to cluster together.

•Those two rules are helpful when determining contact energy hierarchy. Simply cells of

one type like to be surrounded by those cells with which the contact energy is the

lowest.

•And vice versa, if you want to make two cells not to touch each other, make sure that

contact energy between them is high.

Practical way of guessing contact energy hierarchy

Cell sorting simulation where cells of both

type like to be surrounded by medium. That

is contact energy between Condensing and

Medium as well as between

NonCondensing and Medium is very low

JCM=JNM<JNN<JCC<JNC

Examples of different contact energy hierarchies

Cell sorting simulation where cells of both

type do not like to be surrounded by

medium and cells of homotypic cells do not

like each other

JNC<<JNN=JCC<JCM=JNM

Examples of different contact energy hierarchies

CompuCell3D Subtleties

Now that we’ve seen and run a simulation, we can go back and review some general

points:

1. Understanding XML

2. Running CC3D from command line (useful for running CC3D on clusters)

3. Replacing XML with corresponding Python syntax

CC3DML is an XML, which stands for eXtensible Markup Language. A standard

way to exchange information between different applications.

XML Example:

<Sentence>

 <Text>It is too early to be in class</Text>

 <FontType>TimesNewRoman</FontType>

 <FontSize>12</FontSize>

 <DisplayHint Hint=“AddFrameAround”/>

</Sentence>

Generic XML 101

<Computer>

 <CPU>Pentium

 <Frequency Unit=“GHz”>2.4</Frequency>

 </CPU>

 <Memory>DDR-3

 <Frequency Unit=“MHz”>800</Frequency>

</Memory>

…

</Computer>

Computer

CPU

Frequency

Unit=“GHz”

Memory

Frequency

Unit=“MHz”

Pentium

2.4

800

DDR-3

XML is essentially a definition of hierarchical (tree-like) data structure

1. The CC3DML must specify the simulation in the following order:

• Potts

• Plugins

• Steppables

If you mix, e.g. Plugins with Steppables you will get an error.

2. Remember to match every xml tag with a closing tag

<Plugin>

…

</Plugin>

3. Watch for typos – an error in the CC3DML syntax will generate an error pointing to

the offending line

4. Modify/reuse examples when possible, rather than starting from scratch – saves a

lot of time

Putting It All Together - Avoiding Common Errors in CC3DML code

You can start a simulation with or without CompuCell Player from the command line.

Open a console (terminal) and type:

./compucell3d.command –i cellsort_2D.xml (on OSX)

./compucell3d.sh –i cellsort_2D.xml (on Linux)

compucell3d.bat –i cellsort_2D.xml (on Windows) – or simply double click the CC3D

Desktop icon

Running CompuCell3D from the command line is required if you want to run in batch

mode on a cluster. For more information about command line options see the

“Running CompuCell3D” manual at www.compucell3d.org.

Running a Simulation From the Command Line

http://www.compucell3d.org/

1000 MCS 1000 MCS

The simulation parameters were kept the same for the two runs

Cell-sorting simulation on square and hexagonal lattices

Replacing CC3DML with

Python

def configureSimulation(sim):

Snt=ElementCC3D(“Sentence”)

Txt=Snt.ElementCC3D(“Text”,{}

,”It is too early”)

Fnt=Snt.ElementCC3D(“FontType”,{},

”TimesNewR”)

fntSize=Snt.ElementCC3D(“FontSize”,

{},12)

Disp=Snt.ElementCC3D(“DisplayHint”,

{“Hint”:”AddFrameAround”})

Generic XML Example: Parallel Python Example

<Sentence>

 <Text>It is too early to be in class</Text>

 <FontType>TimesNewRoman</FontType>

 <FontSize>12</FontSize>

 <DisplayHint Hint=“AddFrameAround”/>

</Sentence>

CC3D Supports Python Syntax Parallel to CC3DML Syntax

Since developing CompuCell3D simulation requires typing some simple code it is

important that you have the right tools to do that most effectively.

THE BEST EDITOR IS TWEDIT (supported by Consumer Research tests)

•On Windows systems we also recommend Notepad++ editor:

http://notepad-plus.sourceforge.net/uk/site.htm

•On Linux you have lots of choices: Kate (my favorite), gedit, mcedit etc.

•On OSX situation you may use Smultron

http://sourceforge.net/projects/smultron/

or TextWrangler

http://www.barebones.com/products/textwrangler/

And as usual, if nothing else works there is always vi, emacs and punch-cards

Choosing the Right Text Editor

http://notepad-plus.sourceforge.net/uk/site.htm
http://notepad-plus.sourceforge.net/uk/site.htm
http://notepad-plus.sourceforge.net/uk/site.htm
http://sourceforge.net/projects/smultron/
http://www.barebones.com/products/textwrangler/

Go to Settings->Preferences…

Configuring Notepad++ for use with Python

On the “Edit Components” tab change Tab Settings to :

Tab size: 4

Replace by space: “checked” Click on the number

to change it

Go to Settings->Configure Kate …

Configuring Kate for use with Python

Click Editing and in the “General” Tab in “Tabulators” section set:

Insert spaces instead of tabulators: “checked”

Tab width: “4 characters”

On “Indentation” tab in “Indentation Properties” section set:

Indentation width: 4 characters

•Starting with 3.2.0 versions you may get rid of XML file and use Python to describe

entire simulation.

•The advantage of doing so is that you have one less file to worry about but also you

may more easily manipulate simulation parameters. For example if you want contact

energy between two cell types be twice as big as between two other cell types you

could easily implement it in Python. Doing the same exercise with CC3DML is a bit

harder (but not impossible).

•Python syntax used to describe simulation closely mimics CC3DML syntax. There are

however certain differences and inconsistencies caused by the fact that we are using

different languages to accomplish same task. Currently there is no documentation

explaining in detail Python syntax that replaces CC3DML. It will be developed soon

•The most important reason for defining entire simulation in Python is the possibility of

simulation steering i.e. the ability to dynamically change simulation parameters while

simulation is running (available in 3.2.1)

• The way you replace XML in Python is purely mechanical and we will show it on a

simple example

Using Python to describe entire simulations

<Computer>

 <CPU>Pentium

 <Frequency Unit=“GHz”>2.4</Frequency>

 </CPU>

 <Memory>DDR-3

 <Frequency Unit=“MHz”>800</Frequency>

</Memory>

…

</Computer>

Computer

CPU

Frequency

Unit=“GHz”

Memory

Frequency

Unit=“MHz”

Pentium

2.4

800

XML is essentially a definition of hierarchical (tree-like) data structure

root=createElement(…parameters…)

child1=root.createElement(…parameters…)

child1_of_child1=child1.createElement(…parameters…)

child2=root.createElement(…parameters…)

child1_of_child2=child2.createElement(…parameters…)

Building tree-like structure in a computer language (e.g. Python)

<CompuCell3D>

 <Potts>

 <Dimensions x="100" y="100" z="1"/>

 <Anneal>10</Anneal>

 <Steps>10000</Steps>

 <Temperature>10</Temperature>

 <NeighborOrder>2</NeighborOrder>

 </Potts>

</CompuCell3D>

 import CompuCellSetup

from XMLUtils import ElementCC3D

cc3d=ElementCC3D("CompuCell3D")

potts=cc3d.ElementCC3D("Potts")

potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})

potts.ElementCC3D(“Anneal”,{},10)

potts.ElementCC3D("Steps",{},1000)

potts.ElementCC3D("Temperature",{},10)

potts.ElementCC3D("NeighborOrder",{},2)

Notice , by using Python we have even saved few lines

Replacing XML with Python syntax:

Rules:

•To open XML document, create parent ElementCC3D:

cc3d=ElementCC3D("CompuCell3D")

•For nesting XML elements inside another XML element use the following:

potts=cc3d.ElementCC3D("Potts")

•If the element has attribute use Python dictionary syntax to list the attributes:

potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})

•If the XML element has value but no attributes use the following:

potts.ElementCC3D("NeighborOrder",{},2)

•If the XML element has both value and attributes combine two previous examples

potts.ElementCC3D("NeighborOrder",{“LatticeType”:”Hexagonal”},2)*

*for illustration purposes only

import sys

from os import environ

import string

sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

configureSimulation(sim)

CompuCellSetup.initializeSimulationObjects(sim,simthread)

from PySteppables import SteppableRegistry

steppableRegistry=SteppableRegistry()

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Python-based simulation – template script

But you need to implement configureSimulation function:

Python

def configureSimulation(sim):

 import CompuCellSetup

 from XMLUtils import ElementCC3D

 cc3d=ElementCC3D("CompuCell3D")

 potts=cc3d.ElementCC3D("Potts")

 potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})

 potts.ElementCC3D("Steps",{},1000)

 potts.ElementCC3D("Temperature",{},10)

 potts.ElementCC3D("NeighborOrder",{},2)

 cellType=cc3d.ElementCC3D("Plugin",{"Name":"CellType"})

 cellType.ElementCC3D("CellType", {"TypeName":"Medium", "TypeId":"0"})

 cellType.ElementCC3D("CellType", {"TypeName":"Condensing", "TypeId":"1"})

 cellType.ElementCC3D("CellType", {"TypeName":"NonCondensing", "TypeId":"2"})

 volume=cc3d.ElementCC3D("Plugin",{"Name":"Volume"})

 volume.ElementCC3D("TargetVolume",{},25)

 volume.ElementCC3D("LambdaVolume",{},2.0)

 contact=cc3d.ElementCC3D("Plugin",{"Name":"Contact"})

 contact.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)

 contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},16)

 contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Condensing"},2)

 contact.ElementCC3D("Energy",{"Type1":"NonCondensing", "Type2":"Condensing"},11)

 contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Medium"},16)

 contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Medium"},16)

 blobInitializer=cc3d.ElementCC3D("Steppable",{"Type":"BlobInitializer"})

 blobInitializer.ElementCC3D("Gap",{},0) blobInitializer.ElementCC3D("Width",{},5)

 blobInitializer.ElementCC3D("CellSortInit",{},"yes")

 blobInitializer.ElementCC3D("Radius",{},40)

 # next line is very important and very easy to forget about. It registers XML description and points

 # CC3D to the right XML file (or XML tree data structure in this case)

 CompuCellSetup.setSimulationXMLDescription(cc3d)

Continued…

Full example:

Demos/PythonOnlySimulationsExamples/cellsort-2D-player-new-syntax.py

Example: Scaling contact energies – advantage of using Python to configure entire

simulation

energyScale=10

def configureSimulation(sim):

 global energyScale

.

.

 contact=cc3d.ElementCC3D("Plugin",{"Name":"Contact"})

 contact.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)

 contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},1.6*energyscale)

 contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Condensing"},0.2*energyscale)

 contact.ElementCC3D("Energy",{"Type1":"NonCondensing", "Type2":"Condensing"},1.1*energyscale)

 contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Medium"},1.6*energyscale)

 contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Medium"},1.6*energyscale)

It would be a bit awkward (but not impossible) to have same functionality in CC3DML…

Major Plugins and Steppables

Available in CompuCell3D

•Current version of CompuCell3D allows users to run simulations on square and

hexagonal lattices.

•Other regular geometries (e.g. triangular) can be implemented fairly easily

•Some plugins work on square lattice only - e.g. local connectivity plugin

•Switching to hexagonal lattice requires only one line of code

in the Potts section

<LatticeType>Hexagonal</LatticeType>

•Model parameters may need to be adjusted when going from one type lattice to

another. This is clearly an inconvenience but we will try to provide a solution in the

future

• Different lattices have varying degrees of lattice anisotropy. In many cases using

lower anisotropy lattice is desired (e.g. foam coarsening simulation on hexagonal

lattice). It is also important to check results of your simulation on different kind of

lattices to make sure you don’t have any lattice-specific effects.

•Compucell3D makes such comparisons particularly easy

Using different kind of lattices with CompuCell3D

1

1

1

1

2

2 2

2

3

3

3

3

4

4

4

4 4

4

4

4
1

1

1

1

1

1

2 2

2

2 2

2

3

3

3

3

3

3

4

4

4
4 4

4

4

4

4

4 4
4

2D Square Lattice 2D Hexagonal Lattice

Neighbo

r Order

Number of

Neighbors

Euclidian

Distance

Number of

Neighbors

Euclidian

Distance

1 4 1 6

2 4 6

3 4 2 6

4 8 12

3/2

2 3/6

3/8

14 / 35

SquareLattice:

Square in 2D

Cube in 3D

Hexagonal lattice:

Hexagon in 2D

Rhombic dodecahedron in 3D

Nearest neighbors in 2D and their Euclidian distances from the central pixel

CompuCell3D cells have a default set of attributes:

Volume, surface, center of mass position, cell id etc…

Additional attributes are added during runtime:

List of cells neighbors, polarization vector, Python dictionary or Python list etc…

To keep parameters up-to-date users need to declare appropriate plugins in the

CC3DML configuration file.

For example, to make sure surface of cell is up-to-date users need to make sure that

SurfaceTracker plugin is registered:

Include :

<Plugin Name=“SurfaceTracker”/>

Cell Attributes

or use Surface plugin which will implicitly call SurfaceTracker

<Plugin Name=“Surface”>

 <LambdaSurface>0.0</LambdaSurface>

 <TargetSurface>25.0</TargetSurface>

</Plugin>

But here surface tracking costs you extra calculation of surface energy term:

E=…+(s-ST)2 +…

 <Plugin Name="VolumeFlex">

 <VolumeEnergyParameters CellType=“Amoeba" TargetVolume=“150" LambdaVolume="10"/>

 <VolumeEnergyParameters CellType=“Bacteria" TargetVolume=“10" LambdaVolume=“50"/>

</Plugin>

 <Plugin Name=“SurfaceFlex">

 <SurfaceEnergyParameters CellType=“Amoeba" TargetSurface=“60" LambdaSurface="10"/>

 <SurfaceEnergyParameters CellType=“Bacteria" TargetSurface=“12" LambdaSurface=“20"/>

</Plugin>

You may specify different volume and surface constraints for different cell types. This

can be done entirely at the XML level.

2)( VvE V 

2)( SsE S 

Type dependent quantities

More Flexible Specification of Surface and Volume Constraints

 <Plugin Name="VolumeLocalFlex“/>

 <Plugin Name=“SurfaceLocalFlex“/>

2)( VvE V 

2)( SsE S 

Notice that all the parameters are local to a cell. Each cell might have different target

volume (target surface) and different  volume (surface). You will need to use Python to

initialize or manipulate those parameters while simulation is running. There is currently

no way to do it from XML level. I am not sure it would be practical either.

Even More Flexible Specification of Surface and Volume Constraints

Sometimes in your simulation you need to have access to a current list of cell neighbor.

CompuCell3D makes this task easy:

 <Plugin Name=“NeighborTracker“/>

Inserting this statement in the plugins section of the XML will ensure that at any given

time the list of cell neighbors will be accessible to the user. You can access such a list

either using C++ or Python. In addition to storing neighbor list , a common surface area

of a cell with its neighbors is stored.

Tracking Cell Neighbors

Including

 <Plugin Name=“CenterOfMass“/>

statement in your XML code (remember to put it in the correct place) will enable cell

centroid tracking:





pixeli

iCM
C xx 




pixeli

iCM yy 



pixeli

iCM
C zz

To get a center of mass of cell you will need to divide centroids by the cell volume:

V

x
x

CM
C

CM 
V

y
y

CM
C

CM 
V

z
z

CM
C

CM 

Tracking Center of Mass of Each Cell

or use simpler syntax in Python

xCM=cell.xCOM

yCM=cell.yCOM

zCM=cell.zCOM

You may initialize simple geometries of cell clusters directly from XML

<Steppable Type=“UniformInitializer">

 <Region>

 <BoxMin x=“10” y=“10” z=“0”/>

 <BoxMax x=“90” y=“90” z=“1”/>

 <Types>Condensing,NonCondensing</Types>

 <Gap>0</Gap>

 <Width>5</Width>

 </Region>

</Steppable>

Specify box size and position

Specify cell types – here the box will be filled

with cells whose types are randomly chosen

(either 1 or 2)

Choose cell size and space between cells

XML initializers - UniformInitializer

<Steppable Type=“UniformInitializer">

 <Region>

 <BoxMin x=“10” y=“10” z=“0”/>

 <BoxMax x=“90” y=“90” z=“1”/>

 <Types>Condensing</Types>

 <Gap>0</Gap>

 <Width>5</Width>

 </Region>

</Steppable>

Notice, we have only specified one type (Condensing) thus all the cells are of the same

type

<Steppable Type=“UniformInitializer">

 <Region>

 <BoxMin x=“10” y=“10” z=“0”/>

 <BoxMax x=“90” y=“90” z=“1”/>

 <Types>Condensing,NonCondensing</Types>

 <Gap>2</Gap>

 <Width>5</Width>

 </Region>

</Steppable>

Introducing a gap between cells

 <Steppable Type="UniformInitializer">

 <Region>

 <BoxMin x="10" y="10" z="0"/>

 <BoxMax x="40" y="40" z="1"/>

 <Gap>0</Gap>

 <Width>5</Width>

 <Types>Condensing,NonCondensing</Types>

 </Region>

 <Region>

 <BoxMin x="50" y="50" z="0"/>

 <BoxMax x="80" y="80" z="1"/>

 <Gap>0</Gap>

 <Width>3</Width>

 <Types>Condensing</Types>

 </Region>

</Steppable>

Notice, we have defined two regions with different cell sizes and different types

 <Steppable Type="BlobInitializer">

 <Region>

 <Radius>30</Radius>

 <Center x="40" y="40" z="0"/>

 <Gap>0</Gap>

 <Width>5</Width>

 <Types>Condensing,NonCondensing</Types>

 </Region>

 <Region>

 <Radius>20</Radius>

 <Center x="80" y="80" z="0"/>

 <Gap>0</Gap>

 <Width>3</Width>

 <Types>Condensing</Types>

 </Region>

</Steppable>

Defining two regions with different cell sizes and different types for BlobInitializer is

very similar to the same task with UniformInitilizer. There are some new XML tags

which differ the two initializers.

XML initializers - BlobInitializer

When using BlobInitializer of UniformInitializer you may list same type many times:

<Types>Condensing,NonCondensing,NonCondensing,NonCondensing</Types>

The number of cells of a given type will be proportional to the number of times a given

type is listed inside the <Types> tag.

In the above example the 3/4 of cells will be NonCondensing and 1/4 will be

Condensing

 <Steppable Type="BlobInitializer">

 <Region>

 <Radius>40</Radius>

 <Center x="50" y="50" z="0"/>

 <Gap>0</Gap>

 <Width>5</Width>

 <Types>

 Condensing,

 NonCondensing,

 NonCondensing,

 NonCondensing

 </Types>

 </Region>

 </Steppable>

Population control using initializers

Use PIFInitializer to create sophisticated initial conditions. PIF file allows you to

compose cells from single pixels or from larger rectangular blocks

The syntax of the PIF file is given below:

Cell_id Cell_type x_low x_high y_low y_high z_low z_high

Example (file: amoebae_2D_workshop.pif):

0 amoeba 10 15 10 15 0 0

This will create rectangular cell with x-coordinates ranging from 10 to 15

(inclusive), y coordinates ranging from 10 to 15 (inclusive) and z coordinates

ranging from 0 to 0 inclusive.

 <Steppable Type="PIFInitializer">

 <PIFName>amoebae_2D_workshop.pif</PIFName>

 </Steppable>

0,0

Using PIFInitilizer

Let’s add another cell:

Example (file: amoebae_2D_workshop.pif):

0 Amoeba 10 15 10 15 0 0

1 Bacteria 35 40 35 40 0 0

Notice that new cell has different cell_id (1) and different type (Bacterium)

Let’s add pixels and blocks to the two cells

from previous example:

Example (file: amoebae_2D_workshop.pif):

0 Amoeba 10 15 10 15 0 0

1 Bacteria 35 40 35 40 0 0

0 Amoeba 16 16 15 15 0 0

1 Bacteria 35 37 41 45 0 0

To add pixels, start new pif line with existing cell_id (0 or 1 here) and specify pixels.

This is what happens when you do not reuse

cell_id

Example (file: amoebae_2D_workshop.pif):

0 Amoeba 10 15 10 15 0 0

1 Bacteria 35 40 35 40 0 0

0 Amoeba 16 16 15 15 0 0

2 Bacteria 35 37 41 45 0 0

Introducing new cell_id (2) creates new cell.

PIF files allow users to specify arbitrarily complex cell shapes and cell arrangements.

The drawback is, that typing PIF file is quite tedious task and , not recommended.

Typically PIF files are created using scripts.

In the future release of CompuCell3D users will be able to draw on the screen cells or

regions filled with cells using GUI tools. Such graphical initialization tools will greatly

simplify the process of setting up new simulations. This project has high priority on our

TO DO list.

PIFDumper is typically used to output cell lattice every predefined number of MCS. It is

useful because, you may start with rectangular cells, “round them up” by running

CompuCell3D , output cell lattice using PIF dumper and reload newly created PIF file

using PIFInitializer.

 <Steppable Type="PIFDumper“ Frequency=“100”>

 <PIFName>amoebae</PIFName>

 </Steppable>

Above syntax tells CompuCell3D to store cell lattice as a PIF file every 100 MCS.

The files will be named amoebae.100.pif , amoebae.200.pif etc…

 <Steppable Type="PIFInitializer">

 <PIFName>amoebae.100.pif</PIFName>

 </Steppable>

To reload file , say amoebae.100.pif use already familiar syntax:

PIFDumper - yet another way to create initial condition

See presentation by Mitja Hmeljak

PIFTracer and other PIF Generators

Basic facts

•Chemotaxis is defined as cell motion induced by a presence (gradient) of a chemical.

•In GGH formalism chemotaxis is implemented as a spin copy bias which depends on

chemical gradient.

•Chemotaxis was first introduced to GGH formalism by Paulien Hogeweg from University

of Utrecht, Netherlands

•In CompuCell3D Chemotaxis plugin provides wide range of options to support different

modes of chemotaxis.

•Chemotaxis plugin requires the presence of at least one concentration field. The fields

can be inserted into CompuCell3D simulation by means PDE solvers or can be created,

initialized and managed explicitly from the Python level

Chemotaxis

))()((sourcendestinatiochem xcxcE  

If concentration at the spin-copy destination pixel (c(xdestination)) is higher than

concentration at the spin-copy source (c(xsource)) AND  is positive then E is negative

and such spin copy will be accepted. The cell chemotacts up the concentration gradient

x

C(x)

Lower concentration

Higher concentration

Chemorepulsion can be obtained by making  negative

Chemotaxis Term – Most Basic Form


















)(

)(

)(

)(

source

source

ndestinatio

ndestinatio
chem

xca

xc

xca

xc
E 


















1)(

)(

1)(

)(

source

source

ndestinatio

ndestinatio
chem

xca

xc

xca

xc
E 

Alternative Formulas For Chemotaxis Energy

<Plugin Name="Chemotaxis">

 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">

 <ChemotaxisByType Type="Amoeba" Lambda="300"/>

 <ChemotaxisByType Type="Bacteria" Lambda="200"/>

 </ChemicalField>

 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">

 <ChemotaxisByType Type="Amoeba" Lambda=“-300"/>

</ChemicalField>

 </Plugin>

))()((sourcendestinatiochem xcxcE  

Notice , that different cell types may have different chemotactic properties. For more

than 1 chemical fields the change of chemotaxis energy expression is given below:





fieldi

sourceindestinatioiichem xcxcE))()((

Chemotaxis - XML Examples

<Plugin Name="Chemotaxis">

 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">

 <ChemotaxisByType Type="Amoeba" Lambda="300"/>

 <ChemotaxisByType Type="Bacteria" Lambda="200"/>

 </ChemicalField>

 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">

 <ChemotaxisByType Type="Amoeba" Lambda=“-300“ SaturationCoef=“2.0”/>

</ChemicalField>

 </Plugin>


















)(

)(

)(

)(

source

source

ndestinatio

ndestinatio
chem

xca

xc

xca

xc
E 

Chemotaxis - XML Examples continued

<Plugin Name="Chemotaxis">

 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">

 <ChemotaxisByType Type="Amoeba" Lambda="300"/>

 <ChemotaxisByType Type="Bacteria" Lambda="200"/>

 </ChemicalField>

 <ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">

 <ChemotaxisByType Type="Amoeba" Lambda=“-300“ SaturationLinearCoef=“2.0”/>

</ChemicalField>

 </Plugin>


















1)(

)(

1)(

)(

source

source

ndestinatio

ndestinatio
chem

xca

xc

xca

xc
E 

))()((sourcendestinatiochem xcxcE  

Chemotaxis - XML Examples continued

•CompuCell3D has built-in diffusion , reaction diffusion and advection diffusion PDE

solvers. Those are, probably most frequently used solver in GGH modeling.

•CompuCell3D uses explicit (unstable but fast) method to solve the PDE. Constantly

changing boundary conditions practically rule out more robust, but slow implicit solvers.

•Because of instability users should make sure that their PDE parameters do not

produce wrong results (which could manifest themselves as “rough” concentration

profiles, “insane” concentration values, NaN’s - Not A Number etc…). Future release of

CompuCell3D will provide tools to detect potential PDE instabilities.

•Additional solvers can be implemented directly in C++ or using BioLogo. BioLogo is

especially attractive because it takes as an input human readable PDE description and

generates fast C++ code.

•Typically a concentration from the PDE solver is read by other CompuCell3D modules

to adjust cell properties. Currently the best way of dealing with this is through Python

interface.

PDE Solvers

DiffusionSolverFE - a better version of FlexibleDiffusionSolverFE

 <Steppable Type="DiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <GlobalDiffusionConstant>0.010</GlobalDiffusionConstant>

 <GlobalDecayConstant>0.000</GlobalDecayConstant>

 <ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>

 </DiffusionData>

 </DiffusionField>

 </Steppable>

Define diffusion field

Read-in initial condition

Initial Condition File Format:

x y z concentration

Example:

27 27 0 2000.0

45 45 0 0.0 …

Define global diffusion parameters

Boundary Condition Specification - applies to most solvers

 <Steppable Type="DiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <GlobalDiffusionConstant>0.010</GlobalDiffusionConstant>

 <GlobalDecayConstant>0.000</GlobalDecayConstant>

 <ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>

 </DiffusionData>

 <BoundaryConditions>

 <Plane Axis="X">

 <Periodic/>

 </Plane>

 <Plane Axis="Y">

 <Periodic/>

 </Plane>

 </BoundaryConditions>

 </DiffusionField>

 </Steppable>

For more details see CompuCell3D Reference Manual –

www.compucell3d.org/Manuals

http://www.compucell3d.org/Manuals

Flexible Diffusion Solver

 <Steppable Type="FlexibleDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <DiffusionConstant>0.010</DiffusionConstant>

 <DecayConstant>0.000</DecayConstant>

 <ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>

 </DiffusionData>

 </DiffusionField>

 </Steppable>

Define diffusion field

Read-in initial condition

Initial Condition File Format:

x y z concentration

Example:

27 27 0 2000.0

45 45 0 0.0 …

Define diffusion parameters

Two-pulse initial condition

Initial condition (diffusion_2D.pulse.txt):

5 5 0 1000.0

27 27 0 2000.0

 <Steppable Type="FlexibleDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <DiffusionConstant>0.010</DiffusionConstant>

 <DecayConstant>0.000</DecayConstant>

 <DoNotDiffuseTo>Medium</DoNotDiffuseTo>

 <ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>

 </DiffusionData>

 </DiffusionField>

 </Steppable>

You may specify diffusion regions

FGF will diffuse inside big cell and will not go to Medium

 <Steppable Type="DiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <GlobalDiffusionConstant>0.010</GlobalDiffusionConstant>

 <GlobalDecayConstant>0.000</GlobalDecayConstant>

 <DiffusionCoefficient CellType=“Medium”>0.0</DiffusionCoefficient>

 <ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>

 </DiffusionData>

 </DiffusionField>

 </Steppable>

You may specify diffusion regions

FGF will diffuse inside big cell and will not go to Medium

 <Steppable Type="FlexibleDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <DiffusionConstant>0.010</DiffusionConstant>

 <DecayConstant>0.000</DecayConstant>

 <DoNotDiffuseTo>Wall</DoNotDiffuseTo>

 <ConcentrationFileName>diffusion_2D_wall.pulse.txt</ConcentrationFileName>

 </DiffusionData>

 </DiffusionField>

 </Steppable>

FGF will not diffuse to the Wall

 <Steppable Type="FlexibleDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <DiffusionConstant>0.010</DiffusionConstant>

 <DecayConstant>0.000</DecayConstant>

 <!--DoNotDiffuseTo>Wall</DoNotDiffuseTo-->

 <ConcentrationFileName>diffusion_2D_wall.pulse.txt</ConcentrationFileName>

 </DiffusionData>

 </DiffusionField>

 </Steppable>

Now FGF diffuses everywhere

PDE Solver Caller Plugin (this plugin is deprecated as of 3.6.2)

By default PDE solver is called once per MCS. You may call it more often, say 3 times

per MCS by including PDESolverCaller plugin:

<Plugin Name="PDESolverCaller">

 <CallPDE PDESolverName="FlexibleDiffusionSolverFE" ExtraTimesPerMC=“2"/>

 </Plugin>

Notice, that you may include multiple CallPDE tags to call different PDESolvers with

different frequencies.

You typically use this plugin to avoid numerical instabilities when working with large

diffusion constants

Secretion

 <Steppable Type="FlexibleDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <DiffusionConstant>0.000</DiffusionConstant>

 <DecayConstant>0.000</DecayConstant>

 </DiffusionData>

 <SecretionData>

 <Secretion Type="Amoeba">20</Secretion>

 </SecretionData>

 </DiffusionField>

 </Steppable>

We turned diffusion off and have cells of type

Amoba secrete FGF. Secretion takes place at every

pixel belonging to Amoeba cells. At each MCS we

increase the value of the concentration at those

pixels by 20 units.

CompuCell3D offers several modes for including secretion in your simulations. Let’s look

at concrete examples:`

 <Steppable Type="FlexibleDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <DiffusionConstant>0.000</DiffusionConstant>

 <DecayConstant>0.000</DecayConstant>

 </DiffusionData>

 <SecretionData>

 <SecretionOnContact Type=“Amoeba" SecreteOnContactWith=“Medium">20.1</SecretionOnContact>

 </SecretionData>

 </DiffusionField>

 </Steppable>

Secretion will take place in those pixels

belonging to Amoeba cells that have contact

with Medium

 <Steppable Type="FlexibleDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <DiffusionConstant>0.000</DiffusionConstant>

 <DecayConstant>0.000</DecayConstant>

 </DiffusionData>

 <SecretionData>

 <SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">20.1</SecretionOnContact>

 </SecretionData>

 </DiffusionField>

 </Steppable>

Secretion will take place in those pixels

belonging to Medium cells that have contact

with Amoeba

 <Steppable Type="FlexibleDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>FGF</FieldName>

 <DiffusionConstant>0.000</DiffusionConstant>

 <DecayConstant>0.000</DecayConstant>

 </DiffusionData>

 <SecretionData>

 <SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">20.1</SecretionOnContact>

 <SecretionOnContact Type="Bacteria“ SecreteOnContactWith="Bacteria">10.1</SecretionOnContact>

 <SecretionOnContact Type="Bacteria" SecreteOnContactWith="Medium">5.1</SecretionOnContact>

</SecretionData>

 </DiffusionField>

 </Steppable>

1.Secretion will take place in those pixels

belonging to Medium cells that have contact

with Amoeba.

2.There will be secretion in pixels of Bacteria

cells that have contact with medium.

3.Secretion will also take place in those pixels

of bacteria cells that have contact with other

bacteria cells

Reaction-Diffusion set of PDE’s

 

 

 

21
1 1 1 1 2

22
2 2 2 1 2

2

1 2

, , ,

, , ,

, , ,

N

N

N
N N N N

c
= D c f c c c

t

c
= D c f c c c

t

c
= D c f c c c

t


 




 




 



Solving general set of above PDE’s can be tricky because functions ‘f’ can have

arbitrary form. There are two ways to deal with this problem:

1. For each set of PDE’s write new PDE solver. This is not a bad idea if you can do it

“on the fly”. If you can write a code that automatically generates and compiles

PDE solver you will see no performance degradation

2. Use fast math expression parser that will interpret mathematical expressions

during run time
CompuCell3D 3.4.1 uses the second solution. The reason was that it was the

simplest to implement and also one does not have to bother about compilers

installed on users machines. However such PDE solver will not be as fast as the

compiled one

2 3

2

0.01 /3+0.3-

0.01 0.08 0.064 0.056

F
= F F F H

t

H
= H F H

t


  




   



Let’s consider a simple example

 <Steppable Type="ReactionDiffusionSolverFE">

 <DiffusionField>

 <DiffusionData>

 <FieldName>F</FieldName>

 <DiffusionConstant>0.01</DiffusionConstant>

 <ConcentrationFileName>Demos/diffusion/FN.pulse.txt</ConcentrationFileName>

 <AdditionalTerm>F-F*F*F/3+0.3-H</AdditionalTerm>

 </DiffusionData>

 </DiffusionField>

 <DiffusionField>

 <DiffusionData>

 <FieldName>H</FieldName>

 <DiffusionConstant>0.01</DiffusionConstant>

 <AdditionalTerm>0.08*F-0.064*H+0.056</AdditionalTerm>

 </DiffusionData>

 </DiffusionField>

 </Steppable>

Functions of F and H are coded using quite naturally looking syntax. The output of the

above simulation with periodic boundary conditions may looks like

It is quite interesting that the slowdown due to interpreting user defined functions is

very small.

Imposing Directed Motion of Cells

One can impose artificial spin flip bias that would have an effect of moving cell in the

direction OPPOSITE to Lambda vector specified below. The magnitude of the lambda

vector determines the “amount” of spin copy bias.

<Plugin Name="ExternalPotential">

 <Lambda x="-0.5" y="0.0" z="0.0"/>

 </Plugin>

)(_ sourcendestinatiopotentialexternal xxE  

E will be negative (favoring spin copy)

Imposing Directed Motion of Cells On Individual Basis

In CC3DML:

<Plugin Name="ExternalPotential“/>

In Python:

cell.lambdaVecX=-1.0

cell.lambdaVecY=1.0

cell.lambdaVecZ=0.0

Connectivity plugin ensures that 2D cells are not fragmented and are simply

connected. It decreases probability of certain spin flips which are can break

connectedness of a cell. Users can specify energy penalty that will be incured if the

spin copy is to break connectedness of the cell.:

Syntax:

<Plugin Name=“Connectivity”>

 <Penalty>100000</Penalty>

</Plugin>

Note: this plugin will not work properly with hexagonal lattice

Connectivity Plugin

For cases where fast connectivity plugin does not work ConnectivityGlobal and its ‘flex’

flavor do the job. Because they require more computations it is best to apply them to

limited subpopulations of cells.

ConnectivityGlobal

CC3DML Syntax:

<Plugin Name="ConnectivityGlobal">

 <Penalty Type="Body1">1</Penalty>

</Plugin>

Notice the actual number used for penalty is irrelevant as long as it is greater than 0

Universal Connectivity Plugin (somewhat slow)

In CC3DML

<Plugin Name="ConnectivityGlobal“/>

In Python

to set constraint for cell:

self.connectivityGlobalPlugin.setConnectivityStrength(cell,1)

to get the constraint:

self.connectivityGlobalPlugin.getConnectivityStrength(cell)

Notice the actual number used for penalty is irrelevant as long as it is greater than 0

ConnectivityGlobal (on individual basis)

Cell sorting simulation with and without connectivity plugin

Length constraint plugin is used to force cells to keep preferred length along cell’s

longest axis (we assume that cells have elliptical shape):

<Plugin Name=“LengthConstraint”>

 <LengthEnergyParameters TargetLength=“15” LambdaLength=“2.0”/>

</Plugin>

The LambdaLength and TargetLength play similar role to LambdaVolume and

TargetVolume from Volume Plugin.

IMPORTANT: Length Constraint Plugin has to be used together with connectivity plugin

or else cells might become fragmented. The applicability of the LengthConstraint and

Connectivity Plugins is limited to 2D simulations.

For more information see

“Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent

remodeling” by Roeland M.H. Merks et al Developmental Biology 289 (2006) 44– 54

Length Constraint Plugin

Length constraint plugin at work

Note: this plugin will not work properly with hexagonal lattice

