CompuCell3D Training Workshop
NIMBIoS,
University of Tennessee
Knoxville,
May 18-21 2011

Maciej Swat

James Glazier

Randy Heiland
Julio Belmonte

Mitja Hmeljak

What you will learn during the workshop?

What is CompuCell3D?

Why use CompuCell3D?

Demo simulations

Glazier-Graner-Hogeweg (GGH) model — an overview
CompuCell3D architecture and terminology

XML 101. CC3DML-intro

Building first CompuCell3D simulation

Visualization package — CompuCell Player

© 00 N o 0o bk~ W DdPE

Python scripting inside CompuCelI3D

10. Building C++ CompuCell3D extension modules — for interested participants

What Is CompuCell3D?

1. CompuCell3D is a modeling environment used to build, test, run and visualize
GGH-based simulations

2. CompuCell3D has built-in scripting language (Python) that allows users to quite
easily write extension modules that are essential for building sophisticated
biological models.

3. CompuCell3D thus is NOT a specialized software

4. Running CompuCell3D simulations DOES NOT require recompilation

5. CompuCell3D model is described using CompuCell3D XML and Python
script(s)

6. CompuCell3D platform is distributed with a GUI front end — CompuCell Player.
The Player provides 2- and 3-D visualization and simulation replay capabillities.

7. CompuCell3D is a cross platform application that runs on Linux/Unix, Windows,
Mac OSX. CompuCell3D simulations can be easily shared

Why Use CompuCell3D? What Are the Alternatives?

1.

CompuCell3D allows users to set up and run their simulations within minutes,
maybe hours. A typical development of a specialized GGH code takes orders of
magnitudes longer time.

CompuCell3D simulations DO NOT need to be recompiled. If you want to
change parameters (in XML or Python scripts) or logic (in Python scripts) you
just make the changes and re-run the simulation. With hand-compiled
simulations there is much more to do. Recompilation of every simulation is also
error prone and often limits users to those who have significant programming
background.

CompuCell3D is actively developed , maintained and supported. On
www.compucell3d.org website users can download manuals, tutorials and
developer documentation. CompuCell3D has approx. 4 releases each year —
some of which are bug-fix releases and some are major

CompuCell3D has many users around the world. This makes it easier to
collaborate or exchange modules and results saving time spent on developing
new model.

The Biocomplexity Institute organizes training workshops and mentorship
programs. Those are great opportunities to visit Bloomington and learn
biological modeling using CompuCell3D. For more info see
www.compucell3d.org

Why model sharing and standards are important?

1. 99% of modeling done with custom written code is very hard/impossible to reproduce
or verify. Even in best quality publications authors may forget to describe small
details which are actually essential to reproduce the described work.

2. Using standard modeling tools instead of writing your own code improves chances of
your research being reused or improved by other scientists. Note: in certain
situations people might be interested in, precisely, the opposite.

3. When people spend most of their time working on new ideas rather than struggling to
reproduce old results it greatly improves research efficiency

4. Bug tracking/bug bug detection is much more efficient with shared tools than with
custom written ones. Bugs are also better documented for shared software.

5. Developing and sharing modules with other researchers is best way of improving
software modeling tools used by community of researchers

Demo Simulations

GGH(Glazier Graner Hogeweg) Model
also known as CPM(Cellular Potts Model)

) -‘i,.r F —+
3 —+
: —+
’ =
A 1 1 11
1 + 14
. . :: : >
' rl ‘ - -1
. | - > -
/ 1
+
= — -
T
1
= = =
1 111 1 111
4 + | 4+ 4 + | 4+
> =

™

E = Z JT(U(X))J(G(X')) (1_ 5T(G(X)),T(0'(X')))
X, X'

+A,(s, —S_) +
A (v, =V,)’

,T(G(X')))

é‘T(U(X))

(o (X)) (1

7(a(x))

J

X, X

+A4(S
A, (v

-5,)% +

o}

)2

o)

V

o)

invalid attempt valid attempt accept

valid attempt accept valid attempt

reject valid attempt accept

The GGH Model Formalism Overview

*Energy minimization formalism
- extended by Graner and Glazier, 1992
*DAH: Contact energy depending on cell types (differentiated cells)

E= Z ooy L= 0ri000) +
X, X'

ﬂ’s (SO' _SO')Z +ﬂ’v (VO' _VO')Z +

E.. +E._ +

chem hapt ' ***

*Metropolis algorithm: probability of configuration change

P(AE) = 1, AE<0
P(AE) = e 2B AE >0

Brief Explanation of Equation Symbols

< o(x) —denotes id of the cell occupying
position x. All pixels pointed by arrow have
same cell id , thus they belong to the same
cell

1(o(X)) denotes cell type of cell with id o(x). In the
picture above blue and yellow cells have different
cell types and different cell id. Arrows mark
different cell types

Notice that in your model you may (will) have many cells of the same type but with
different id. For example in a simple cellsorting simulation there will be many cells of
type “Condensing” and many cells with type “NonCondensinig”

CompuCell3D terminology

1.

Pixel-copy attempt is an event where program randomly picks a lattice site in
an attempt to copy the pixel to a neighboring lattice site.

Monte Carlo Step (MCS) consists of series pixel-copy attempts. Usually the
number of pixel copy-attempts in single MCS is equal to the number of lattice
sites, but this is can be customized

CompucCell3D Plugin is a software module that either calculates an energy
term in a Hamiltonian or implements action in response to pixel copy (lattice
monitors). Note that not all spin-copy attempts will trigger lattice monitors to run.

Steppables are CompuCell3D modules that are run every MCS after all pixel-
copy attempts for a given MCS have been exhausted. Most of Steppables are
implemented in Python. Most customizations of CompuCell3D simulations is
done through Steppables

Steppers are modules that are run for those spin-copy attempts that actually
resulted in energy calculation. They are run regardless whether actual pixel-
copy occurred or not. For example cell mitosis is implemented in the form of
stepper.

Fixed Steppers are modules that are run every pixel-copy attempt.

CompuCell3D Terminology — Visual Guide

o
K

hange pixel

During pixel copy
“plue” pixel (newCell) replaces
“yellow” pixel (oldCell)

100x100x1 square lattice = 10000 lattice sites (pixels)

MCS 21

10000 pixel-
copy attempts

MCS 22

"l 10000 pixel-

copy attempts

A 4

MCS 23

10000 pixel-
copy attempts

MCS 24

10000 pixel-
copy attempts

Run

Steppables

Run

Steppables

Run

Steppables

Nearest neighbors in 2D and their Euclidian distances from the central pixel

Nearest Neighbor Order Number of nearest Euclidian distance - square
neighbors |attice
5/4|3|4|5 1 4 1
4] 2[1]2]4 2 4 V2
3|1|e|1|3 3 4 2
4(2|1| 2|4 4 8
5|4(3|4|5 V5
5 4 J8

Pixel copy can take place between any order nearest neighbor (although in practice
we limit ourselves to only few first oders).

<NeighborOrder>2</NeighborOrder> 2nd nearest neighbor

Contact energy calculation (see further slides) are also done up to certain order of
nearest neighbors (default is 1)

<NeighborOrder>2</NeighborOrder>

Note: older tags still work but we encourage using new ones - they make more sense

Nearest neighbors in 2D and their Euclidian distances from the central pixel

4 3 4
4 2 1 2 4
3|1 |@|1 |3
4 | 2 112 |4
4 3 4
2D Square Lattice 2D Hexagonal Lattice
Neighbo | Number of | Euclidian Number of | Euclidian
r Order Neighbors | Distance Neighbors | Distance
1 4 1 6 2/\/5
2 4 42 6 /6/\/5
3 4 2 6 8/\/§
4 8 g 1201 1413

CompucCell3D Architecture

Object oriented implementation in C++ and Python

Visualization, Steering,
User Interface

Python Interpreter Kernel Calc Tallltjeglcnr?an o
Biologo Code Generator Runs Metropolis Algorithm u 9
In energy
PDE Solvers

Lattice monitoring

Typical “Run-Time” Architecture of CompuCell

CompucCellPlayer

CompuCell3D
Kernel

Plugins

CompuCell can berunin a
variety of ways:

*Through the Player with or
without Python interpreter

*As a Python script

*As a stand alone
computational kernel+plugins

XML 101

XML stands for eXtensible Markup Language. It is NOT a programming language.
Its main purpose is to standarize information exchange between different
applications.

XML Example: def configureSimulation(sim):

<Sentence> Snt=ElementCC3D(“Sentence”)

<Text>It is too early to be In class</Text> Txt=Snt.ElementCC3D(“Text",{},"It is to
<FontType>TimesNewRoman</FontType> Fnt=Snt.ElementCC3D(“FontType”,{},"T

<FontSize>12</FontSize> fntSize=Snt.ElementCC3D(“FontSize” {}

<DisplayHint Hint="AddFrameAround”/> Disp=Snt.ElementCC3D(“DisplayHint”,
</Sentence> {“Hint”:"AddFrameAround’})

XML is essentially a definition of hierarchical (tree-like) data structure

<Computer> Computer
<CPU>Pentium -~ CPU — Pentium
<Frequency Unit="GHz">2.4</Frequency> L Frequency ”4
</CPU> Unit:“GHZ” ’
<Memory>DDR-3

-+ Memory — DDR-3

<Frequency Unit="MHz">800</Frequency> \‘ Frequency
</Memory> _ — 800
Unit="MHz"

</Computer>

CompucCell Related Example

Defining basic properties of the simulation like lattice dimension, number of
Monte Carlo Steps, Temperature and ratio of pixel-copy attempts to number
of lattice sites (Flip2DimRatio). <Potts> section has to be included in every
CompuCell3D simulation

<Potts>
<Dimensions x="71" y="36" z="211"/>
<Steps>10</Steps>

<Temperature>2</Temperature>
<Flip2DimRatio>2</Flip2DimRatio>
</Potts>

Defining properties of Volume Energy term — cell target volume and lambda
parameter:
<Plugin Name=*Volume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>2.0</LambdaVolume>
</Plugin>

Building Your First CompuCell3D Simulation

All simulation parameters are controlled by the config file. The config file
allows you to only add those features needed for your current simulation,
enabling better use of system resources.

Define Lattice and Simulation Parameters

111
| -
T

= < CompuCell3D>
S <Potts>
<Dimensions x=“100" y=*100" z="1"/>
<Steps>10</Steps>

<Temperature>2</Temperature>

<Flip2DimRatio>1</Flip2DimRatio>

</Potts>

</CompuCell3D>

Define Cell Types Used in the Simulation

Each CompuCell3D xml file must list all cell types that will used in the simulation

. / > <Plugin Name="CellType">
<CellType TypeName="Medium" Typeld="0"/>
<CellType TypeName="“Light" Typeld="1"/>
<CellType TypeName="Dark" Typeld="2"/>
</Plugin>

Notice that Medium is listed with Typeld =0. This is both convention and a
REQUIREMENT in CompuCell3D. Reassigning Medium to a different Typeld may
give undefined results. This limitation will be fixed in one of the next CompuCell3D

releases

Define Energy Terms of the Hamiltonian and Their Parameters

Volume
volume
volumeEnergy(cell)

Surface
area
surfaceEnergy(cell)

Contact
contactEnergy(
celll, cell2)

<Plugin Name="Volume'>
<TargetVolume>25</TargetVolume>
<LambdaVolume>1.0</LambdaVolume>
</Plugin>

<Plugin Name="Surface">
<TargetSurface>21</TargetSurface>
<LambdaSurface>0.5</LambdaSurface>
</Plugin>

<Plugin Name="Contact'>
<Energy Typel="Medium" Type2="Medium'>0

</Energy>

<Energy Typel="Light" Type2="Medium''>16
</Energy>

<Energy Typel="Dark" Type2="Medium'>16
</Energy>

<Energy Typel="Light" Type2="Light'>16.0
</Energy>

<Energy Typel="Dark" Type2=""Dark'>2.0
</Energy>

<Energy Typel="Light" Type2="Dark>11.0
</Energy>

</Plugin>

Plugin XML Syntax

E=..+A4,(v, -V) +.

\\\\\\\fPlugin Name=""Volume"'>
<TargetVolume>25</TargetVolume>

<LambdaVolume>1.0</LambdaVolume>
</Plugin>

E=..+A(s,—S_)"+..

\\\\\\fPlugin Name="'Surface"''>
<TargetSurface>21</TargetSurface>

<LambdaSurface>0.5</LambdaSurface>
</Plugin>

Plugin XML Syntax — Contact Energy

="Medium"'>0

<Energy Typel="Light" Type2="Medium''>16.0
</Energy>

<Energy Typel=""Dark" Type2="Medium'>16.0
</Energy>

<Energy Typel="'Light" Type2="Light''>16
</Energy>

<Energy Typel="Dark" Type2="'Dark'>2.0
</Energy>

<Energy Typel="Light" Type2="Dark">11.0
</Energy>

</Plugin>

1-06 term ensures that pixels belonging to the same cell do not contribute to contact
energy

Laying Out Cells on the Lattice

Using built-in cell field initializer:

<Steppable Type="Bloblnitializer">
<Region>
<Radius>30</Radius>
<Center x="40" y="40" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Dark,Light</Types>
</Region>
</Steppable>

This is just an example of cell field initializer. More general ways of cell field
initialization will be discussed later.

NOTE: In actual example Dark cells are called Condensing
and Light cells NonCondensing

Putting It All Together - cellsort_2D.xml

<CompuCell3D> l
<Potts> <Plugin Name="Contact">
<Dimensions x="100" y="100" z="1"/> <Energy Typel="Medium" Type2="Medium">0
<Steps>10</Steps> </Energy>
<Temperature>2</Temperature> <Energy Typel="Light" Type2="Medium">16
<Flip2DimRatio>1</Flip2DimRatio> </Energy>
</Potts> <Energy Typel="Dark" Type2="Medium">16
</Energy>
<Plugin Name="CellType"> <Energy Typel="Light" Type2="Light">16
<CellType TypeName="Medium" Typeld="0"/> </Energy>
<CellType TypeName="Light" Typeld="1"/> <Energy Typel="Dark" Type2="Dark">2.0
<CellType TypeName="Dark" ="2"/> </Energy>
</Plugin> <Energy Typel="Light" Type2="Dark">11
</Energy>
<Plugin Name="Volume"> </Plugin>
<TargetVolume>25</TargetVolume>
<LambdaVolume>1.0</LambdaVolume> <Steppable Type="Bloblnitializer">
</Plugin> <Region>
<Radius>30</Radius>
<Plugin Name="Surface"> <Center x="40" y="40" z="0"/>
<TargetSurface>21</TargetSurface> <Gap>0</Gap>
<LambdaSurface>0.5</LambdaSurface> <Width>5</Width>
</Plugin> <Types>Dark,Light</Types>
</Region>
| </Steppable>

</CompuCell3D>
Coding the same simulation in C/C++/Java/Fortran would take you at least 1000 lines
of code...

Putting It All Together - Avoiding Common Errors in XML code

1. First specify Potts section, then list all the plugins and finally list all the
steppables. This is the correct order and if you mix e.g. plugins with steppables
you will get an error. Remember the correct order is

 Potts

e Plugins

o Steppables

2. Remember to match every xml tag with a closing tag

<Plugin>

</Plugin>

3. Watch for typos — if there is an error in the XML syntax CC3D will give you an
error pointing to the location of an offending line

4. Modify/reuse available examples rather than starting from scratch — saves a lot of
time

Foam Coarsening simulation

<CompuCell3D>
<Potts>
<Dimensions x="101" y="101" z="1"/>
<Steps>1000</Steps>
<Temperature>5</Temperature>
<Flip2DimRatio>1.0</Flip2DimRatio>
<Boundary_y>Periodic</Boundary_y>
<Boundary_ x>Periodic</Boundary x>
<NeighborOrder>2</NeighborOrder>
</Potts>

<Plugin Name="CellType">
<CellType TypeName="Medium" Typeld="0"/>
<CellType TypeName="Foam" Typeld="1"/>
</Plugin>

<Plugin Name="Contact">

<Energy Typel="Foam" Type2="Foam">50</Energy>
<NeighborOrder>2</NeighborOrder>

</Plugin>

<Steppable Type="PIFInitializer">
<PIFName>foaminit2D.pif</PIFName>
</Steppable>

</CompuCell3D>

CompucCellPlayer — the Best
Way To Run Simulations

¢ cellsort_2D.xml - CompuCell3D Player

File ‘“iew Simulation Visualization Tools Help

Steering bar allows users to start or pause the
simulation, zoom in , zoom out, to switch between
2D and 3D visualization, change view modes (cell
field, pressure field , chemical concentration field,
velocity field etc..)

I [=] 3

| @ O Oi” 4 |l ;|” ® 8 o v '-,M w2 |50 =0 vz |50 =H|cel_Field

kgl

Maodel Editor

g x 0 cellsart_ZD.xml 30 view |

Property I Walue
B Potts Patts
[Plugin Wolurne
B Plugin CellType
[Plugin Conkact
[+ Steppable BlobInitializer
Flugins

Marmne Drescripkion

Cellorientation
"Cellﬁq.:é el
CenterOfiass
Chemotaxis
.ChemotaxisDicty
"C.o.ﬁ.l;éctc.omp.ar.tment
.Connectivity
"Col;n.e.cti.\.f.it.yLocaIFIex
.Contact
ContactLacalFle:

5 e e

ContactLocalProduct
ContactMultiCad

—

12 | ExternalPotential

13 | LengthConstraink

14 .LengthCDnstraintLocaIF...

15 | Mitasis
; .MitosisSimple
‘;- MomentoFInertia
E .NeighborStick
19 | NeighborTracksr
[MC Step: 18 Min: 0 Max: 0

.E.Tracks the center of

.g.ﬁ.dds the chemotacti... |
[Adds the interaction... |
E.Adds connectivicy co...-.;
| adds connectivity co...
E.Adds the interaction...
| adds the interaction. .. |
I;Contact EMErgyY Func...-.;

E.Col.ﬂtact énergy FL.l.nc..... |

| Tracks cell neighbol

EComputes Change in...
;P.dds cell type attrib...

| Adds the chemotact... |

| Implements external... |

[Tracks cell lengths ...

.Tracks cell lengths a...

|Splits cells when the ... |

;Splits cells when the ...
| Tracks the center af ... |
| Adds the intera

Player can output multiple
views during single
simulation run — Add
Screenshot function

Information bar

Console

Cukput I Errors|

Opening a Simulation in the Player

Go to File->Open Simulation File

File Wiew Simulation Visualization Tools

< cellsort_2D.xml - CompuCell3D Player

Help

I (=]

|00 0O0|lm K £

JJ(" SDf‘xylu ::Ir' leD :’f" yle i"--FieIdType--;I

|| & & [2] fed
& x

Model Editar
Property | Yalue |
Plugins 5 X
Mame Description | —
0 |CellOrientation Computes Change in..
1 |CelType Adds cell bype attrib...
2 |CenterOfMass Tracks the center of ...
3 | Chemotaxis Adds the chemotacti...
4 | ChemotaxisDicky Adds the chemotacti...
S | ContactComparkmment Adds the interaction...
& | Connectivity Adds conmectivity ca...
7 | ConnectivityLocalFlex Adds connectivity co...
8 |Contack Adds the interaction...
9 | ContactlLocalFlex Adds the inberaction...
10 | ContactLocalProduct Contact energy func..
11 | ContactMultiCad Contact energy func..
12 |ExternalPotential Implements external...
13 |LengthConstraink Tracks cell lengths a...
14 |LengthConstraintLocalF... | Tracks cell lengths a...
15 | Mitosis Splits cells when the ...
16 | MitosisSimple Splits cells when the ...
17 |MomentOFInertia Tracks the center of ...
15 |Meighborstick Adds the interaction...
Meighbor Tracker Tracks cell neighbors... LI

=

—

Console

Open Simulation File

Lok in: I =9 cellsort_20

e Bk E

2l

cellso

a3

=1

File: name:

Filez of type:

cellsort_2D_xml_07_21_2009_135_45_21

07_22_2009_12_02_33

(2| cellsort_20_boundary xml

|| cellsort_2D_Playersettings . xml
2| cellsort_2D_variable_matility, xml
2| cellsort_engulfment_ZD, xml

Icellsort_2D.me j
[~

IXML files ar Python scripts [*.sml *.py]

Open I
Cancel /L

Cukpuk I Errorsl

Running Simulation From Command Line

You can simply start the simulation with or without Player straight from command line
Open up console (terminal) and type:

Jcompucell3d.command —i cellsort_2D.xml (on OSX)

Jcompucell3d.sh —i cellsort_2D.xml (on Linux)

compucell3d.bat —i cellsort_2D.xml (on Windows) — or simply double click Desktop
icon

Running CompuCell3D from command line not only convenient, but sometimes (on
clusters) the only option to run the simulation. For more information about command
line options please see “Running CompuCell3D” manual available at
www.compucell3d.org.

http://www.compucell3d.org/

Running the Simulation

*After typing the XML file in your favorite editor all you need to do to run the
simulation is to open the XML file in the Player and hit “Play” button.

*Screenshots from the simulations are automatically stored in the directory with
name composed of simulation file name and a time at which simulation was started

*As you can see, setting up CompuCell3D simulation was reasonably simple.

oIt is quite likely that if you were to code entire simulation in C/C++/Java etc. you
would need much more time.

*\We hope that now you understand why using CompuCell3D saves you a lot of time
and allows you to concentrate on biological modeling and not on writing low level
computer code.

*During last year we have improved CompuCell3D performance so that it is on par
with hand-written code. Yet, if you really to have the fastest GGH code in the world
you should write code your own simulation directly in C or even better in assembly
language. Before you do it, make sure you want to spend time rewriting the code
that already exist...

Replacing CC3DML with
Python

Choosing the Right Text Editor

Since developing CompuCell3D simulation requires typing some simple code it is
important that you have the right tools to do that most effectively.

THE BEST EDITOR IS TWEDIT
*On Windows systems we highly recommend Notepad++ editor:

http://notepad-plus.sourceforge.net/uk/site.htm

*On Linux you have lots of choices: Kate (my favorite), gedit, mcedit etc.

*On OSX situation gets a bit complicated, but there is one editor called Smultron
which is good for programming

http://sourceforge.net/projects/smultron/

And as usual, if nothing else works there is always vi, and emacs

http://notepad-plus.sourceforge.net/uk/site.htm
http://sourceforge.net/projects/smultron/

Configuring Notepad++ for use with Python

Go to Settings->Preferences...

S=E

File Edit Search Wew Format Language | Settings Macro Run TextFX Plugins ‘Window 7 %

| cHE 5 & & T : | BR | =1 [EQ NN BB *
Styler Configurator, ..

(=] rew11 | Shortcut Mapper ...

1

Mormal text File |nb char : 0 Ln:1 Col:1 Sel:0 |D05'|,Wind0ws ANST s

On the “Edit Components” tab change Tab Settings to :
Tab size: 4

Replace by space: “checked” Click on the number
to change it

"Project_install,COMPUCELL3D_3.4.2_jinstalllplay n ¥ - Notep 10 x|
File Edit Search “iew Encoding Language Settings Macro Run TextF¥ Plugins Window 7 i

| cHE 5 caldbD|ae|sa|t s|EE[E

Py -

i ||

B “wronoMomentDiinertiat,«ml I B wionoMomentDfinertial, pif I B wronatomentOfinetias teppables . py I B "wongMomentOfinetial. py I B TaibudMew.py I B cellso A I 4
sz8 element Fyista=True ;I
550 Preferences |
330 - Print I Backupj fiuto-Completion I [1] |
331 prin: General I Editing I Mew Docurnent/Default Direckary I File: Association Language MenuiTab Settings
33z if
233] Language Menu Tab Settings
354 i] W Make language menu compack =
335 [else Available itams Disabled items nu:nr_mal .

actionscripk
30 i Marral Texk ads
Gt 1 PHF asm
] C asp
338 1 Bl aukait
339] c# bash
340 H : Ohbjective-C batch
Java C
S Resource file caml
342 def =s=t3 HTML emake =l
343 prin I%ﬂmtef'l
344 [if ke el
Pascal .
345 B 1 Batch Tab size : 4
1 M5 TMI file ¥ Replace by space
g MS-NNS Skl LI
T =l elif
348 1
350
e print "recentSimulationsList.count () =",recentSimalationslist.count()
352 print "maxlunberOfRecentFiles=" maxNunber 0fRecentFiles
’?I'-'\? =1 AiFf rercentSimnmlatrinn=sl.di=st conntdY = mﬂvT\Tnmhi:rl'"rF'D»:-r\-pnr'F"i lea:. _ILI
4 4

|Pyth0n file 17585 chars 18082 bytes 493 lines Ln: 345 Col: 27 Sel: &{a bytes)in 1 ranges 1IN ANST NS 2

Configuring Kate for use with Python

Go to Settings->Configure Kate ...

. + Untitled - Kate ——— ¥ e X
File Edit View Go Document Bookmarks Sessions Window Tools | Settings Help

JJ @ New L Open ‘ 4aBack £p Forward | I save A save As | 1|T Show Statusbar
| Show Path

= Configure Toolbars...

Y Configure Kate... |

|T Show Toolbar
: 2| Full Screen Mode Cirl+Shift+F

| Documents

&4 Configure Shortcuts...

[T Filesystem Browser

1]
Line: 1 Col: 1 [[INS[LINE Untitled

[Terminal

Click Editing and in the “General” Tab in “Tabulators” section set:

Insert spaces instead of tabulators: “checked”

Tab width: “4 characters”

Configure -

Kate

= Application
i gy General

i [Sessions
. =-| Document List
= @ Plugins
-l File Selector
... @ Terminal
=- i Editor Component

F Help |

Editing Options /

—Tab s

@ Cursor Selection | Indentation | Auto Completion | Vilnput Mode |

¥ Insert spaces instead of tabulators
I Highlight tabulators

wgth: IE characters 3:

 —————
— Static Word Wrap

™ Enable static word wrap

™ Show static word wrap marker (if applicable)

Wrap words at: |80 characters :I

—Misc

I Remove trailing spaces while editing
™ Highlight trailing spaces
™ Auto brackets

« Apply | @ Cancel

On “Indentation” tab in “Indentation Properties” section set:

Indentation width: 4 characters

Configure - Kate

=7 2 Application Editing Options £
- fpr General l

[0 sessions .
_ Document List General | Cursar Selecti@uto Completion | Vilnput Mode |
= ¢ Plugins ;
‘:H File Selectar W
.. @ Terminal ZIndentation Properties
1 Editor Component
| Appearance
i Fonts & Colors

E Open/save [T Adjust indentation of code pasted from the clipboard

Indentation width: | 4 characters =

—Indentation Actions

™ Backspace key in leading blank space unindents
Tab key action (if no selection exists) Mare ...

" Always advance to the next tab position

" Always increase indentation level

* Increase indentation level if in leading blank space

P Help | ¥ OK | « Apply | @ Cancel

Using Python to describe entire simulations

«Starting with 3.2.0 versions you may get rid of XML file and use Python to describe
entire simulation.

*The advantage of doing so is that you have one less file to worry about but also you
may more easily manipulate simulation parameters. For example if you want contact
energy between two cell types be twice as big as between two other cell types you
could easily implement it in Python. Doing the same exercise with CC3DML is a bit
harder (but not impossible).

*Python syntax used to describe simulation closely mimics CC3DML syntax. There are
however certain differences and inconsistencies caused by the fact that we are using
different languages to accomplish same task. Currently there is no documentation
explaining in detail Python syntax that replaces CC3DML. It will be developed soon

*The most important reason for defining entire simulation in Python is the possibility of
simulation steering i.e. the ability to dynamically change simulation parameters while
simulation is running (available in 3.2.1)

» The way you replace XML in Python is purely mechanical and we will show it on a
simple example

XML is essentially a definition of hierarchical (tree-like) data structure

<Computer> Computer
<CPU>Pentium ~ CPU — Pentium
<Frequency Unit="GHz">2.4</Frequency> L Frequency ”4
</CPU> Unit:“GHZ” ’
<Memory>DDR-3 ' Memory
<Frequency Unit="MHz">800</Frequency> \‘ Frequency
</Memory> Unit="MHa" — 800

</Computer>

Building tree-like structure in a computer language (e.g. Python)

root=createElement(...parameters...)

child1l=root.createElement(...parameters...)

childl_of childl=childl.createElement(...parameters...)

child2=root.createElement(...parameters...)

childl_of child2=child2.createElement(...parameters...)

Replacing XML with Python syntax:

import CompuCellSetup
from XMLUtils import ElementCC3D

cc3d=ElementCC3D("CompuCell3D") <CompucCell3D>
potts=cc3d.ElementCC3D("Potts") <Potts>
potts.ElementCC3D("Dimensions" {"x":100,"y":100,"z":1}) ~ <Dimensions x="100" y="100" z="1"/>
3 ., <Anneal>10</Anneal>
potts.ElementCC3D(“Anneal” {},10) <Steps>10000</Steps>
potts.ElementCC3D("Steps",{},1000) <Temperature>10</Temperature>
potts.ElementCC3D("Temperature",{},10) <NeighborOrder>2</NeighborOrder>
potts.ElementCC3D("NeighborOrder",{},2) </Potts>

</CompuCell3D>

Notice , by using Python we have even saved few lines

Rules:
*To open XML document, create parent ElementCC3D:
cc3d=ElementCC3D("CompuCell3D")

*For nesting XML elements inside another XML element use the following:
potts=cc3d.ElementCC3D("Potts")

oIf the element has attribute use Python dictionary syntax to list the attributes:
potts.ElementCC3D("Dimensions” ,{"x":100,"y":100,"z":1})

oIf the XML element has value but no attributes use the following:
potts.ElementCC3D("NeighborOrder" ,{},2)

oIf the XML element has both value and attributes combine two previous examples

potts.ElementCC3D("NeighborOrder" ,{“LatticeType”:”Hexagonal”},2)

*for illustration purposes only

Python-based simulation — template script

Import sys

from os import environ

import string
sys.path.append(environ["PYTHON_MODULE_PATH"])
iImport CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()
configureSimulation(sim)
CompucCellSetup.initializeSimulationObjects(sim,simthread)

from PySteppables import SteppableRegistry
steppableRegistry=SteppableReqgistry()

CompuCellSetup.mainLoop(sim,simthread,steppableReqgistry)

But you need to implement configureSimulation function:

Python

def configureSimulation(sim):
import CompuCellSetup
from XMLULtils import ElementCC3D
cc3d=ElementCC3D("CompuCell3D")
potts=cc3d.ElementCC3D("Potts")
potts.ElementCC3D("Dimensions” {"x":100,"y":100,"z":1})
potts.ElementCC3D(" Steps",{},1000)
potts.ElementCC3D(" Temperature" {},10)
potts.ElementCC3D("NeighborOrder" {},2)
cellType=cc3d.ElementCC3D("Plugin”,{"Name":"CellType"})
cellType.ElementCC3D("CellType", {"TypeName":"Medium", "Typeld":"0"})
cellType.ElementCC3D("CellType", {"TypeName":"Condensing", "Typeld":"1"})
cellType.ElementCC3D("CellType", {"TypeName":"NonCondensing", "Typeld":"2"})
volume=cc3d.ElementCC3D("Plugin” {"Name":"Volume"})
volume.ElementCC3D(" TargetVolume" {},25)
volume.ElementCC3D("LambdaVolume" {},2.0)

Continued...

contact=cc3d.ElementCC3D("Plugin”,{"Name":"Contact"})

contact.ElementCC3D("Energy"”, {" Typel":"Medium", "Type2":"Medium"},0)
contact.ElementCC3D("Energy", {"Typel":"NonCondensing", "Type2":"NonCondensing"},16)
contact.ElementCC3D("Energy"”, {" Typel":"Condensing"”, "Type2":"Condensing"},2)
contact.ElementCC3D("Energy” ,{" Typel":"NonCondensing", "Type2":"Condensing"},11)
contact.ElementCC3D("Energy"”, {" Typel":"NonCondensing", "Type2":"Medium"},16)
contact.ElementCC3D("Energy", {"Typel":"Condensing", "Type2":"Medium"},16)
bloblnitializer=cc3d.ElementCC3D(" Steppable",{" Type":"Bloblnitializer"})
bloblnitializer.ElementCC3D("Gap",{},0) bloblnitializer.ElementCC3D("Width" {},5)
bloblnitializer.ElementCC3D("CellSortInit",{},"yes")
bloblnitializer.ElementCC3D("Radius",{},40)

next line is very important and very easy to forget about. It registers XML description and points

CC3D to the right XML file (or XML tree data structure in this case)

CompuCellSetup.setSimulationXMLDescription(cc3d)

Full example:

Demos/PythonOnlySimulationsExamples/cellsort-2D-player-new-syntax.py

Example: Scaling contact energies — advantage of using Python to configure entire
simulation

energyScale=10

def configureSimulation(sim):

global energyScale

contact=cc3d.ElementCC3D("Plugin”,{"Name":"Contact"})

contact.ElementCC3D("Energy", {"Typel":"Medium", "Type2":"Medium"},0)
contact.ElementCC3D("Energy", {"Typel":"NonCondensing", "Type2":"NonCondensing"},1.6*energyscale)
contact.ElementCC3D("Energy", {"Typel":"Condensing", "Type2":"Condensing"},0.2*energyscale)
contact.ElementCC3D("Energy" {"Typel":"NonCondensing", "Type2":"Condensing"},1.1*energyscale)
contact.ElementCC3D("Energy", {"Typel":"NonCondensing", "Type2":"Medium"},1.6*energyscale)
contact.ElementCC3D("Energy", {"Typel":"Condensing", "Type2":"Medium"},1.6*energyscale)

It would be a bit awkward (but not impossible) to have same functionality in CC3DML...

CompuCell Player — The Basics

«Caution: CompuCellPlayer is still under development so some options may not work
properly however, for the most part this is fully functional ComUCell3D front end and
much better than its predecessor

*For the most part , CompuCell Player is fairly intuitive to use. It is quite important to
get familiar with configure options to the get most out of the Player

CompuCell Player is a graphical front-end to CompuCell3D computational part. It is
written in Python using PyQt4 and VTK. It also uses C++ wrapped code for
performance critical processing.

*Because of PyQt4 , it provides native look and feel on Linux, OSX and Windows. This
means that dialog and windows will look pretty much the same as other dialogs in your
operating system. Traditionally, Qt tookits look the ugliest on OSX.

CompucCell Player provides basic visualization capabilities for CompuCell3D
simulations. It automatically detects types of plots for given simulation.

«Saves users the hassle of writing visualization code.
*Helps debugging simulations

*Next version of Player will allow users to write their own visualization pipeline using
VTK standards

Capabilities of CompuCellPlayer— Why You Should Use the Player.

*Provides wide range of visualization - cell field plots, concentration plots, vector
field plots in both 2- and 3-D.

*Allows to store multiple lattice views in a single run. For example users can store
multiple projections of the cell lattice, concentration fields, various 3D views etc... in
a single run.

«Can be run in GUI and silent mode (i.e. without displaying GUI but still saving
screenshots)

*|s ready to be used on clusters that do not have X-server installed. This feature is
essential for doing “production runs” of your simulations.

«Concentration fields and vector fields initialized from Python level can easily be
displayed in the Player. Yes, you can control the Player visualizations from Python
level.

«Configurable from XML level for those users who prefer typing to clicking

Configuring the Player

Most of Player’s configuration options are accessible through Tools-

>Configuration... and Visualization menus.

X CompuCell3D Player _ I =18 x|
File Wiew Simulation Visualization Tools Help
1@ O O O |JJ EE= |JJ @ & fiow o] Gl |[[C Cxy [0 HCwefo HC vz [0 [Feld vpe -]
Model Editar g x
Property | Walue |
=2 3D Yiew
Configure Cell Type Colors
Colormap Plot —ell Typ
Cutput Settings i
é V\ectir Field Plit Eellvee gf:::;:;lllﬂ "Calor"
i to change the color
|] for a given cell type
2
Flugins t 7
Mame Description 3_
0 |Cellorientation Computes Change in.. 4
1 |CelType Adds cell bype attrib Add Cell Type | Delete Cell Type | Add or Delete cell bype
2 |CenterOfMass Tracks the center of ..
3 |Chemotaxis Adds the chemotacti..
4 | ChemotaxisDicky Adds the chemotacti. . Rl B ol _I
5 | ContactCompartment Adds the interaction..
6 | Connectivity Adds connectivity co.. Contour Color _l
7 | ConnectivityLocalFlex Adds connectivity co..
& |Contact Adds the interaction..
9 | ContactlocalFlex Adds the interaction..
10 | ContactLocalProduct Contact energy func.. b | e I Cancel Apply
11 | ContackMultiCad Contact energy func..”
12 |ExternalPotential Implements external...
13 |LengthConstraint Tracks cell lengths a...
14 |LengthConstraintLocalF... |Tracks cell lengths a... Console g X
15 | Mitosis Splits cells when the ...
16 | MitosisSimple Splits cells when the ...
17 | MomentOfInertia Tracks the center of ...
18 | Meighborstick, Adds the interaction. ..
19 | Meighbor Tracker Tracks cell neighbors... LI M
1] 4

Visualization Menu allows you to choose whether in 2D cell borders should be
displayed or not (in 3D borders are not drawn at all). You can also select to
draw isocontour lines for the concentration plots and turn on and off displaying
of the information about minimum and maximum concentration.

£: - CompuCell3D Player 101 x|
File Wiew Simulation | Visualization Tools Help

H QO |T Cell Borders Img% vi 0|

Model Editar Concentration Contours

|T Concentration Limits 'I
1

Hf" SDnyID =|® szD = yle i"--FieIdType--LI

Froperky

Flugins g x
Marms Diescription el

0 | CellCrientation Computes Change in. ..

1 | CelType Adds cell bype attrib...

2 | CenterOfMass Tracks the center of ..

3 | Chemotaxis Adds the chematacti...

4 | ChemotaxisDicky Adds the chematacti. ..

5 | ContactCompartment Adds the interaction ..

& | Conneckivity Adds connectivity co...

7 | ConnectivityLocalFlesx Adds connectivity co. ..

g |Contact Adds the interaction...

a | ContactLocalFlex Adds the interaction...

ContactLocalProduct

;Cantact energy func..

11 | ContactMulticad EContact energy func..
12 | ExternalPotential EImpIements external...
13 | LengthConstraink ;Tracks cell lengths a...
14 |LengthConstraintLocalF... |Tracks cell lengths a... Console 3
15 | Mitosis Splits cells when the ...
16 | MitosisSimple -Splits cells when the .
17 | MomentOFInertia Tracks the center UF_
18 | Meighborstick !ndds the interaction...
19 | Meighbaor Tracker | Tracks cell ngighbars. . Li M
[Y

Screen update frequency is a parameter that defines how often (in units of MCS)
Player screen should be updated. Note, if you choose to update screen too often
(say every MCS) you will notice simulation speed degradation because it does take
some time to draw on the screen. You may also choose not to output any files by
checking “Do not output results” check-box. Additionally you have the option to
output simulation data in the VTK format for later replay.

Screenshot frequency determines how often screenshots of the lattice views will be

taken (currently Player outputs *.png files) .

- CompuCell3D. i -3 x|
File ‘iew nulation Visualzation Tools Help
T T
” Q@ O |JJ == |U A a IIDD% | |”r‘ oo HCO e[t HCwlo HfFedtpe- 1]
Model Editor F X
Property l Value |
21|
25 3D View
‘&:: Cell Tupe Colors Configure Output Frequency
il Colormap Plot
Qutput Setti =
,a_ V;::: Fi:ld I:;ii Screen Update Frequency: m
Screens hot Frequency 20 3:
Flugins
Narne | V' Do not output results
0 |Celrientation | Com
1 |celType I add: ™ Use internal console For kext output
2_|CenterOffiass ETrac I Close Plaver window after simulation is done
3 | Chemotaxis | Add:
4 |ChemotaxisDicty ;Add: I~ cutput lattice data in binary (or vEk) format
5 |contactCompartment | Add:
& |connect ity | At
7 | ConnectivitylocalFlex ;Add:
& |contact | Add:
9 |ContactlocalFlex
10 |ContactLocalProduct
11 | ContackMulkiCad Ok I Cancel Apply
12 |ExternalPotential
13 |LengthConstraint
14 |LengthCaonstraintLocalF.. ETracks celllengths a... | Consol =k
15 | Mikosis | Splits cells whenthe ... |
16 | MitosisSimple ;Splits cells when the ...
17 |MomentOfInertia | Tracks the center of ... |
18 |MeighborStick, | dds the interaction...

19 INeighborTracker fTracksceIIneiqhbors...-_L! Output | Errors

Screenshots

Screenshots are taken every “Screenshot Frequency” MCS
By default Player will store screenshots of the currently displayed lattice view.

In addition to this users can choose to store additional screenshots at the same time.
Simply switch to different lattice view, click camera button. Those additional
screenshots will be taken irrespectively of what Player currently displays.

Once you selected additional screenshots it is convenient to save screenshot
description file (it is written automatically by the Player, user just provide file name).
Next time you decide to run CompuCell3D you may just use command

compucell3d.sh -s screenshotDesctiptionFile _cellsort.txt -i cellsort_2D.xml

This will run simulation where stored screenshots will be taken

When you picked lattice views,

you may save screenshot

description file for later reuse

Click camera button
on select lattice views

plot types as well

Notice, you may change

€% - CompuCell3D Plays:r i =]
File Wiew Simulation ‘fisualization Tools Help
|4 Open Simulation File {.py ar xml) Ch+O Iw fnd Y€ 3D oy IG(" %z |0 o L IGIW)
K save simulation ¥ N/ C—

Open Screenshot Description s :l
L-j Open Lattice Description Summary File, .,
bq Exit
Plugins g X

MNarne Description =]

0 |Cellorientation Computes Change in...
i | CelType Adds cell bype attrib...
2 |CenterOfMass Tracks the center of ...
3 | Chemotaxis Adds the chemotacki...
4 | ChemotaxisDicky Adds the chematact...
5 | ContackCompartrnent Adds the interaction...
6 | Connectivity Adds connectivity co...
7 | ConnectivityLocalFle:x: Adds conneckivity co..
g |Contact #dds the inkeraction...
9 | ContactLocalFlex Adds the interaction...
10 | ContactLocalProduct Contack energy Func..
11 |ContackMultiCad Coritact energy func... |
12 |ExternalPotential Implements external .. i
13 |LengthiConstraint Tracks cell lengths a...
14 |LengthConstraintLocalF.., |Tracks cell lengths a... Consale 8 x
15 | Mitosis Splits cells when the .
16 | MitosisSimple Splits cells when the .
17 |MomentOfInertia Tracks the center of ... |
13 | Meighborstick Adds the inkeraction... i
19 | Meighbor Tracker Tracks cell neighbors .. |;| M
[l .

Configure->cell type colors...

To enter new cell type
click “Add Cell Type”

b

utton

(=

. = CompuCell3D Player

File Wiew Simulation

Visualiz\tion Tools Help

Enter cell type number

here

Click here to change
color for cell type 1

/

=101 x|

@O G

| & & oo =] &

JJ(" SDFAID =i szEI = szD /é”——FieldType——;I

SIET
\

Click here to change
—cell border color

Model Editar g X
Property | Mo | —
£ Configuration e
5 3D Wiew /
’d Cell Type Colars Configure Cell Type Colors
53 Colormap Plat —Cell Typ /
g Output Sektings cell fype click any cell
|5 Vector Field Plok in the column "Color"
to change the color
for a given cell type /
Plugins /
[arme
0 |CelCrientation ,;I
—
el EE"TYDE 3 < Add Cell Tvpe | D§ete Cell Type | Add or Delete cell type
2 |CenkerOfMass e
3 |Chemotaxis -
4_ 7Chemota>clsD|cty <: Cell Border Color > |
S | ContackCompartmen
& | Connectivity (Contour Colar) |
7 | ConnectivityLocalFle
& |Contack
9 | ContactLocalFlex 5 x
10 | ContactLocalProduct Reset | Ok I Cancel Apply
11 | ContactMultiCad TOMatt Ereryy Tane..
12 |ExternalPotential Implements external .
13 | LengthConstraint Tracks cell lengths a...
14 |LengthConstraintLocalF... |Tracks cell lengths a... ;I Butp B
1 y

Click here to change
Isocontour color

Configure->Cell types invisible in 3D...

Sometimes when you open up the simulation and switch to 3D view you may find that your
simulation looks like solid a parallelepiped. This might be due to a box made out of frozen
cells that hides inside other cells. In this case you need to make the box invisible.

Type cell type number that you want to be invisible in 3D in this box. Notice, by

default Player will not display Medium (type 0). Here we also make types 4 and 5

invisible

< - CompuCell3D Player ;lglﬁ
File View Simulation Visualization Tools Help
1@ O ¢ ||] = | £ |H @ & [=] ke (| a0 (\xy [o HC o = ywefo =[-FeldTpe - =]
MModel Editar 5 X
Property | Walue I
<! Configuration 21x]
&5 3D View
né Cell Type Colors Configure 3D Yiew
54| Colormap Plat
a Cutput Settings — 3D Display Size — 3D Raokations
|52 Wector Field Plot
b3 |0 3: Altitude |0 3:
¥ |0 32 #zimuth |0 32
Plugins 8 x 2 Io 33 Rall ID 33
Mame Description i
0 |Celdrientation Computes Change in... fnzza‘:; :;: zfe;aongles
1 |CelType Adds cell type atkrib...
2 | CenterOfMass Tracks the center of ... *
= [chemotaxis Adlds the chematachi List of cell bypes invisible in 30 (Example: 1,4,5)
4 | ChemotaxisDicky IAdds the chemotacki... |D,4,5 >
5 | ContactCompartment | Adds the inkeraction...
& | Connectivity Adds connectivity co...
7 | ConnectivityLocalFlex Adds connectivity co...
g |Contack Adds the inkeraction...
9 | ContactlocalFlex Adds the inkeraction... R | 2k I e R
10 | ContactlocalProduct Conkact energy func...
11 | ContactMultiCad Contact energy Func...
12 |ExternalPotential Implements external...
13 |LengthConstraint Tracks cell lengths a..
14 |LengthConstraintLocalf... |Tracks cell lengths a... Console g
15 | Mitosis Splits cells when the ..
16 |MitosisSimple Splits cells when the ..
17 |MomentOFInettia Tracks the center of ...
15 | Meighborstick Adds the interaction...
19 |MeighborTracker Tracks cell neighbors... LI M
[r 4

Steering the simulation

CompuCell3D Player will allow you to change most of the parameters of the XML file
while the simulation is running.

Use steering panel to change simulation
parameters. Make sure you pause
simulation before doing this

< cellsort_2D.xml - CompuCell3D Player

JS[=E3Y R < - cellsort_2D.xml - CompuCell3D Player (ol x|

File View Simulation 1 | Tools Help ‘ Fie Yiew Smulation Visulization Tools Help

1@ O OHJ i | £ |J_|"\ a IIUU%/d/rJ Jrame i Howelo = vl Hcelfad = e O %) M s k| "-‘/|wu%j '-Jiﬂ(‘ oo [0 HC e[HC e[el
Madsl Edtar 8 x cellsort_2D.ml | Model Editar 8% | @ celisart_z0. |

Fraperty | vais A Praperty [vaue |
[Polts Polts y ¢ Potts
- Plugin Volume violume
Targetvolume L Targstyolume: 25
Lambdaiolume 20 . LambdaVolume 2.0

[Plugin CellType [Plugin CellType

(- Plugin Contact Plugin Contact

[} Steppable BlobInitializer Steppable BlobInitializer

Plugins 8 % Flugins g X

Mams Description | Narne Description =

0 |celiorientation Computes Change in... 0 |celorientation Computes Change in

1 |celtype Adds cell type attrib 1 |cellType Adds cell type attrib...

2 |CenterOfMass Tracks the center of ... 2 |CenterofMass Tracks the center of

3 |Chemotaxis Adds the chemotacti 3 |chemotaxis Adds the chemotacti

4 | ChemataxisDicty Adds the chematacti. 4 | ChemotaxisDicty Adds the chemotacti...

5 |ContactCompartent | Adds the interaction 5 |ContactCompartment | Adds the interaction

6 |Cannectivity Adds connectivity co... & | Cannectivity | Adds connectivity co..

7 |ConnectivitylocalFlex | Adds connectivity co 7 |comnectivitylocalFlex | Adds connectivity co

& |Contact Adds the interaction... g |Contact Adds the interaction

9 |ContactiocalFlex Adds the interaction 9 |ContactiocalFlex Adds the interaction...

10 | ContactLocalProduct Contact energy func... 10 | ContactLocalProduct Contact energy func

11 | ContactMulticad Cantart energy func 11 | ContactMultiCad Contact energy func...

12 | ExternalPatential Implements external. 17 | ExternalPotential Implements external...

13 | LengthConstraint Tracks cell lengths & 13 | LenothConstraint Tracks cell lengths

14 | LengthConstraintLocalF... | Tracks cel lengths a... Cansole & x 14 | LengthConstraintLocalF.. | Tracks cell lengths a.. Cansole g x
15 | Mitosis Splits cells when the 15 | Mitosis Splits cells when the

16 | MitosisSimple Splits cells when the ... 16 | MitosisSimple Splits cells when the

17 | Mamentofinertia Tracks the center of 17 | MomentOfinertia Tracks the center of ..

18 | Weighborstick | adds the interaction 18 | MeighborStick Adds the interaction

19 | Neighbor Tracker | Tracks cell neighbors Qutput | Errors 19 | Meighbor Tracker Tracks cell neighbors... Qutput | Errors
[MC Seep: 137 [Min: 0 Max: 0 4| MCsten: 3 ing 0 Max: 0 Y

Target volume = 100

Screenshot was taken before simulation had
time to equilibrate

Target volume = 25

Using different kind of lattices with CompuCell3D

«Current version of CompuCell3D allows users to run simulations on square and
hexagonal lattices.

*Other regular geometries (e.g. triangular) can be implemented fairly easily
«Some plugins work on square lattice only - e.g. local connectivity plugin

*Switching to hexagonal lattice requires only one line of code
in the Potts section

<LatticeType>Hexagonal</LatticeType>

Model parameters may need to be adjusted when going from one type lattice to
another. This is clearly an inconvenience but we will try to provide a solution in the
future

« Different lattices have varying degrees of lattice anisotropy. In many cases using
lower anisotropy lattice is desired (e.g. foam coarsening simulation on hexagonal
lattice). It is also important to check results of your simulation on different kind of
lattices to make sure you don’t have any lattice-specific effects.

Compucell3D makes such comparisons particularly easy

Nearest neighbors in 2D and their Euclidian distances from the central pixel

4 3 4
4 2 1 2 4
3|1 |@|1 |3
4 | 2 112 |4
4 3 4
2D Square Lattice 2D Hexagonal Lattice
Neighbo | Number of | Euclidian Number of | Euclidian
r Order Neighbors | Distance Neighbors | Distance
1 4 1 6 /2/\/5
2 4 42 6 /6/\/5
3 4 2 6 8/\/§
4 8 g 1201 1413

SquarelLattice:
Square in 2D
Cube in 3D
Hexagonal lattice:
Hexagon in 2D

Rhombic dodecahedron in 3D

Cell-sorting simulation on square and hexagonal lattices

The simulation parameters were kept the same for the two runs

1000 MCS 1000 MCS

Cell Attributes

CompuCell3D cells have a default set of attributes:
Volume, surface, center of mass position, cell id etc...
Additional attributes are added during runtime:

List of cells neighbors, polarization vector etc...

To keep parameters up-to-date users need to declare appropriate plugins in the
CC3DML configuration file.

For example, to make sure surface of cell is up-to-date users need to make sure that
SurfaceTracker plugin is registered:

Include :

<Plugin Name=“SurfaceTracker”/>

or use Surface plugin which will implicitly call SurfaceTracker

<Plugin Name=“Surface”>
<LambdaSurface>0.0</LambdaSurface>
<TargetSurface>25.0</TargetSurface>

</Plugin>

But here surface tracking costs you extra calculation of surface energy term:
E=...+A(S-S;)? +...

More Flexible Specification of Surface and Volume Constraints

<Plugin Name="VolumeFlex">
<VolumeEnergyParameters CellType="Amoeba" TargetVolume=“150" LambdaVolume="10"/>
<VolumeEnergyParameters CellType="Bacteria" TargetVolume="10" LambdaVolume="50"/>
</Plugin>

You may specify different volume and surface constraints for different cell types. This
can be done entirely at the XML level.

E=2":(v.-V.

Type dependent quantities

<Plugin Name="SurfaceFlex">
<SurfaceEnergyParameters CellType=“Amoeba" TargetSurface=“60" LambdaSurface="10"/>
<SurfaceEnergyParameters CellType="Bacteria" TargetSurface="12" LambdaSurface="20"/>
</Plugin>

Even More Flexible Specification of Surface and Volume Constraints

<Plugin Name="VolumeLocalFlex"/> E = /1VG(V -V)2
o O

<Plugin Name="SurfacelLocalFlex‘/> E = /180 (SU — Sa)z

Notice that all the parameters are local to a cell. Each cell might have different target
volume (target surface) and different A volume (surface). You will need to use Python to
initialize or manipulate those parameters while simulation is running. There is currently
no way to do it from XML level. | am not sure it would be practical either.

Tracking Cell Neighbors

Sometimes in your simulation you need to have access to a current list of cell neighbor.
CompuCell3D makes this task easy:

<Plugin Name="“NeighborTracker"/>

Inserting this statement in the plugins section of the XML will ensure that at any given
time the list of cell neighbors will be accessible to the user. You can access such a list
either using C++ or Python. In addition to storing neighbor list , a common surface area
of a cell with its neighbors is stored.

Tracking Center of Mass of Each Cell

Including
<Plugin Name=“CenterOfMass"/>

statement in your XML code (remember to put it in the correct place) will enable cell
centroid tracking:

X com = ZXi Yem = Zyi Z%cm = Zzi

i— pixel I—pixel i— pixel
To get a center of mass of cell you will need to divide centroids by the cell volume:

C C
. X cMm . Y cm ZCCM

Xem = V Yem V Lem v

Practical way of guessing contact energy hierarchy

Basic facts:

*Cells that have high contact energies between themselves, when they come together
they increase overall energy of the system. Such cells tend to stay away from each
other.

«Cells that have low contact energies between themselves, when they come together
they decrease overall energy of the system. Such cells tend to cluster together.

*Those two rules are helpful when determining contact energy hierarchy. Simply cells of
one type like to be surrounded by those cells with which the contact energy is the
lowest.

*And vice versa, if you want to make two cells not to touch each other, make sure that
contact energy between them is high.

Examples of different contact energy hierarchies

Cell sorting simulation where cells of both
type like to be surrounded by medium. That
IS contact energy between Condensing and
Medium as well as between
NonCondensing and Medium is very low

Jem=Inv<InnSIec<Ine

Examples of different contact energy hierarchies

Cell sorting simulation where cells of both
type do not like to be surrounded by
medium and cells of homotypic cells do not
like each other

Ine<<I\n=Iec<Iem=Inm

XML initializers - Uniforminitializer

You may initialize simple geometries of cell clusters directly from XML

<Steppable Type=“Uniforminitializer">
<Region>
<BoxMin x=10" y="10" z="0"/>
<BoxMax x="90" y="90" z="1"/>

<Types>Condensing,NonCondensing</Types>

<Gap>0</Gap>
<Width>5</Width>
</Region>

</Steppable>
Specify box size and position

Specify cell types — here the box will be filled
with cells whose types are randomly chosen
(either 1 or 2)

Choose cell size and space between cells

“Uniforminitializer">

<Steppable Type

A

A= A

o 3

u__ 1 o

NN >

s X =

So Y

= c

I <

> 0 A

S c —

58 8 4S

— $

Tl S aM

x> 8§ Qv
>.mw A k_.\w>®
c=S > O NS 5§39
S X X o S oT.=c
el va R - GW%%
x V V Vv VVvVEDYD
\Vj v)

~~
Vi

, we have only specified one type (Condensing) thus all the cells are of the same

Notice
type

<Steppable Type=“UniformInitializer">
<Region>
<BoxMin x=10" y="10" z="0"/>
<BoxMax x="90" y="90" z="1"/>

<Types>Condensing,NonCondensing</Types>

<Gap>2</Gap>
<Width>5</Width>
</Region>
</Steppable>

BEOEEMEEEEEN
OAECOENEEEENCN
EEEEENMEENCN
AONECEEREECC
OfEEEENCENCON.
OONECOO00O0O O
BOOOCOCEECOCOCDEN
OIEECONCORCOCOEEN
BEECEEEREECNC
BEECECEEECOCOEN
OECOEEECORCO00N
BOOOCOOC0NNECNEC

Introducing a gap between cells

<Steppable Type="Uniforminitializer">
<Region>

<BoxMin x="10" y="10" z="0"/>

<BoxMax x="40" y="40" z="1"/>

<Gap>0</Gap>

<Width>5</Width>

</Region
<Region>

</Region>
</Steppable>

Notice, we have defined two regions with different cell sizes and different types

XML initializers - BloblInitializer

<Steppable Type="BloblInitializer">

<Region>
<Radius>30</Radius>
<Center x="40" y="40" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Condensing,NonCondensing</Types>

</Region>

<Region>

, , EEEEEEE
<Radius>20</Radius> A
<Center x="80" y="80" z="0"/> EEEEEEEE
<Gap>0</Gap> EEEaEmEm
<Width>3</Width> EEEEEEEE
<Types>Condensing</Types>

</Region> -
</Steppable>

Defining two regions with different cell sizes and different types for Bloblnitializer is
very similar to the same task with Uniforminitilizer. There are some new XML tags
which differ the two initializers.

Population control using initializers

When using Bloblnitializer of Uniformlnitializer you may list same type many times:
<Types>Condensing,NonCondensing,NonCondensing,NonCondensing</Types>

The number of cells of a given type will be proportional to the number of times a given
type is listed inside the <Types> tag.

In the above example the 3/4 of cells will be NonCondensing and 1/4 will be
Condensing

<Steppable Type="Bloblnitializer">
<Region>
<Radius>40</Radius>
<Center x="50" y="50" z="0"/>

<Gap>0</Gap>
<Width>5</Width> HE BN EEEE EE =
<Types> EEEEEEEEEEE ER
: EEENENEEEEEE N
Condensing, HEE H EEEEEEEER

NonCondensing,
NonCondensing,
NonCondensing
</Types>
</Region>
</Steppable>

Using PIFInitilizer
Use PIFInitializer to create sophisticated initial conditions. PIF file allows you to
compose cells from single pixels or from larger rectangular blocks
The syntax of the PIF file is given below:
Cell _id Cell_type x_low x_highy lowy high z_low z_high
Example (file: amoebae 2D_workshop.pif):
0 amoeba 1015101500

This will create rectangular cell with x-coordinates ranging from 10 to 15
(inclusive), y coordinates ranging from 10 to 15 (inclusive) and z coordinates
ranging from 0 to O inclusive.

<Steppable Type="PIFInitializer">
<PIFName>amoebae 2D workshop.pif</PIFName>
</Steppable>

Let’s add another cell:
Example (file: amoebae 2D _workshop.pif):

0 Amoeba 1015101500
acteriaa3540354000

Notice that new cell has different cell_id (1) and different type (Bacterium)

Let’s add pixels and blocks to the two cells
from previous example:

Example (file: amoebae 2D _workshop.pif):

0 Amoeba 1015101500
1 Bacteria 3540354000
0 Amoeba 16 16 151500
1 Bacteria 3537414500

To add pixels, start new pif line with existing cell_id (O or 1 here) and specify pixels.

This is what happens when you do not reuse
cell id

Example (file: amoebae 2D _workshop.pif):

0 Amoeba 1015101500
1 Bacteria 3540354000
0 Amoeba 16 16 151500
2 Bacteria3537414500

Introducing new cell_id (2) creates new cell.

PIF files allow users to specify arbitrarily complex cell shapes and cell arrangements.
The drawback is, that typing PIF file is quite tedious task and , not recommended.
Typically PIF files are created using scripts.

In the future release of CompuCell3D users will be able to draw on the screen cells or
regions filled with cells using GUI tools. Such graphical initialization tools will greatly
simplify the process of setting up new simulations. This project has high priority on our
TO DO list.

PIFDumper - yet another way to create initial condition

PIFDumper is typically used to output cell lattice every predefined number of MCS. It is
useful because, you may start with rectangular cells, “round them up” by running
CompuCell3D , output cell lattice using PIF dumper and reload newly created PIF file
using PIFInitializer.

<Steppable Type="PIFDumper* Frequency=“100">
<PIFName>amoebae</PIFName>
</Steppable>

Above syntax tells CompuCell3D to store cell lattice as a PIF file every 100 MCS.

The files will be named amoebae.100.pif , amoebae.200.pif etc...

To reload file , say amoebae.100.pif use already familiar syntax:

<Steppable Type="PIFInitializer">
<PIFName>amoebae.100.pif</PIFName>
</Steppable>

PIFTracer and other PIF Generators

PIFTracer (works only on OSX) allows users to “paint” cells using experimental
pictures as a template. Currently it does not support PIF format for compartmental
cells but we developed short Python script that provides temporary fix.

We are working on another tool that can generate PIF file based on colors of the
underlying gif image. That is the color of the cells in the image determines cell type.

Chemotaxis

Basic facts

*Chemotaxis is defined as cell motion induced by a presence (gradient) of a chemical.

*In GGH formalism chemotaxis is implemented as a spin copy bias which depends on
chemical gradient.

*Chemotaxis was first introduced to GGH formalism by Paulien Hogeweg from University
of Utrecht, Netherlands

*In CompuCell3D Chemotaxis plugin provides wide range of options to support different
modes of chemotaxis.

*Chemotaxis plugin requires the presence of at least one concentration field. The fields
can be inserted into CompuCelI3D simulation by means PDE solvers or can be created,
initialized and managed explicitly from the Python level

Chemotaxis Term — Most Basic Form

AEc:hem =—1 (C(Xdestination) _ C(Xsource))

If concentration at the spin-copy destination pixel (C(X .«ination)) 1S Nigher than
concentration at the spin-copy source (c(X.,..)) AND A is positive then AE is negative
and such spin copy will be accepted. The cell chemotacts up the concentration gradient

c)

Lower concentration
Higher concentration

i

Chemorepulsion can be obtained by making A negative

Alternative Formulas For Chemotaxis Energy

AEChem — _i[C(XdeStination) C(Xsource) j

d + C(Xdestination) d + C(X

source)

AE — _/’LL C(Xdestination) C(Xsource)]

h
- a- C(Xdestination) +1 a- C(X) +1

source

Chemotaxis - XML Examples

AEc:hem =—1 (C(Xdestination) — C(Xsource))

<Plugin Name="Chemotaxis"> /\

<ChemicalField Source="FlexibleDiffusionSelverFE" Name="FGF">
<ChemotaxisByType Type="Amoeba" Lambda="300"/>
<ChemotaxisByType Type="Bacteria" Lambda="200"/>
</ChemicalField>
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">
<ChemotaxisByType Type="Amoeba" Lambda="-300"/>
</ChemicalField>
</Plugin>

Notice , that different cell types may have different chemotactic properties. For more
than 1 chemical fields the change of chemotaxis energy expression is given below:

AEchem — Z o /Ii (Ci (Xdestination) —G (Xsource))

I field

Chemotaxis - XML Examples continued

AEchem =-A (c(x de.sﬁnatian) — c(x.saurc'e))

<Plugiyy Name="Chemotaxis">
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">
<ChemotaxisByType Type="Amoeba" Lambda="300"/>
<ChemotaxisByType Type="Bacteria" Lambda="200"/>
</ChemicalField>
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">
<ChemotaxisByType Type="Amoeba" Lambda="-300" SaturationCoef="2.0"/>
</ChemicalField>
</Plugin>

4 A
C(Xdestination) C(Xsource)

AE |
a+ C(Xdestination) a+ C(Xsource))

=

chem

Chemotaxis - XML Examples continued

AEchem =—1 (C(Xdestination) — C(Xsource))

<Plugin Name="Chemotaxis">
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">
<ChemotaxisByType Type="Amoeba" Lambda="300"/>
<ChemotaxisByType Type="Bacteria" Lambda="200"/>
</ChemicalField>
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">
<ChemotaxisByType Type="Amoeba" Lambda="-300" SaturationLinearCoef="2.0"/>
</ChemicalField>
</Plugin>

AEchem — C(Xdestination) C(Xsource)
a"C(Xdestination) +1 é'C(X)+1

source

PDE Solvers

*CompuCell3D has built-in diffusion , reaction diffusion and advection diffusion PDE
solvers. Those are, probably most frequently used solver in GGH modeling.

*CompuCell3D uses explicit (unstable but fast) method to solve the PDE. Constantly
changing boundary conditions practically rule out more robust, but slow implicit solvers.

*Because of instability users should make sure that their PDE parameters do not
produce wrong results (which could manifest themselves as “rough” concentration
profiles, “insane” concentration values, NaN’s - Not A Number etc...). Future release of
CompuCell3D will provide tools to detect potential PDE instabilities.

*Additional solvers can be implemented directly in C++ or using BioLogo. BioLogo is
especially attractive because it takes as an input human readable PDE description and
generates fast C++ code.

*Typically a concentration from the PDE solver is read by other CompuCell3D modules
to adjust cell properties. Currently the best way of dealing with this is through Python
interface.

Flexible Diffusion Solver

<Steppable Type="FlexibleDiffusionSolverFE"> Define diffusion field

<DiffusionField> : . :
<DiffusionData> + Define diffusion parameters

<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>
</DiffusionData>
</DiffusionField>
</Steppable>

Read-in initial condition

Initial Condition File Format;:

X Yy Z concentration

Example:
27 27 0 2000.0
4545 00.0 ...

Two-pulse initial condition

Initial condition (diffusion_2D.pulse.txt):

55010000 ————————mm »
rf_

27 27 0 2000.0 \

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField> You may specify diffusion regions
<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<DoNotDiffuseTo>Medium</DoNotDiffuseTo
<ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>
</DiffusionData>
</DiffusionField>
</Steppable>

FGF will diffuse inside big cell and will not go to Medium

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>
<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<DoNotDiffuseTo>Wall</DoNotDiffuseTo>
<ConcentrationFileName>diffusion_2D_wall.pulse.txt</ConcentrationFileName>
</DiffusionData>
</DiffusionField>
</Steppable>

FGF will not diffuse to the Wall

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>
<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<!--DoNotDiffuseTo>Wall</DoNotDiffuseTo-->
<ConcentrationFileName>diffusion_2D_wall.pulse.txt</ConcentrationFileName>
</DiffusionData>
</DiffusionField>
</Steppable>

Now FGF diffuses everywhere

\—

PDE Solver Caller Plugin

By default PDE solver is called once per MCS. You may call it more often, say 3 times
per MCS by including PDESolverCaller plugin:

<Plugin Name="PDESolverCaller">
<CallPDE PDESolverName="FlexibleDiffusionSolverFE" ExtraTimesPerMC="2"/>

</Plugin>

Notice, that you may include multiple CallPDE tags to call different PDESolvers with
different frequencies.

You typically use this plugin to avoid numerical instabilities when working with large
diffusion constants

Secretion

CompuCell3D offers several modes for including secretion in your simulations. Let’s look
at concrete examples:”

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>

<DecayConstant>0.000</DecayConstant>
</DiffusionData>
<SecretionData>
<Secretion Type="Amoeba">20</Secretion
</SecretionData>
</DiffusionField>
</Steppable>

We turned diffusion off and have cells of type K B Rzt R i
Amoba secrete FGF. Secretion takes place at every

pixel belonging to Amoeba cells. At each MCS we

increase the value of the concentration at those

pixels by 20 units.

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>
<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
</DiffusionData>
<SecretionData>
<SecretionOnContact Type=“Amoeba" SecreteOnContactWith="*Medium">20.1</SecretionOnContact>
</SecretionData>
</DiffusionField>
</Steppable>

Secretion will take place in those pixels
belonging to Amoeba cells that have contact
with Medium

11le403

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>
<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
</DiffusionData>
<SecretionData>
<SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">20.1</SecretionOnContact>
</SecretionData>
</DiffusionField>
</Steppable>

Secretion will take place in those pixels
belonging to Medium cells that have contact
with Amoeba

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>
<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
</DiffusionData>
<SecretionData>
<SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">20.1</SecretionOnContact>
<SecretionOnContact Type="Bacteria“ SecreteOnContactWith="Bacteria">10.1</SecretionOnContact>
<SecretionOnContacy Type="Bacteria“SecreteOnContactWith="Medium">5.1</SecretionOnContact>
</SecretionData>
IDiffusionField>
</Hteppable>

1.Secretion will take place (in those pixels
belonging to Medium cells/that have contact
with Amoeba.

2.There will be secretion jn pixels of Bacteria
cells that have contact with medium.

3.Secretion will also take place in those pixels
of bacteria cells that have contact with other
bacteria cells

487 975 146e+03 1952403

Reaction-Diffusion set of PDE’s

%G D,Vec, + f,(C,,C,,..., Cy)
ot

%€, - D,V°c, + f,(C,,C,p.... Cy)
ot

C
aa—tN: D, Vi, + fy (€. Gy, Cy)

Solving general set of above PDE’s can be tricky because functions ‘f’ can have
arbitrary form. There are two ways to deal with this problem:

1. For each set of PDE’s write new PDE solver. This is not a bad idea if you can do
it “on the fly”. If you can write a code that automatically generates and compiles
PDE solver you will see no performance degradation

2. Use fast math expression parser that will interpret mathematical expressions

during run time
CompuCell3D 3.4.1 uses the second solution. The reason was that it was the

simplest to implement and also one does not have to bother about compilers
installed on users machines. However such PDE solver will not be as fast as the
compiled one

Let’s consider a simple example

%—T: 0.01V2F + F — F*/3+0.3-H

M 0.01V?H +0.08F —0.064H +0.056

ot

<Steppable Type="ReactionDiffusionSolverFE">
<DiffusionField>
<DiffusionData>
<FieldName>F</FieldName>
<DiffusionConstant>0.01</DiffusionConstant>
<ConcentrationFileName>Demos/diffusion/FN.pulse.txt</ConcentrationFileName>
<AdditionalTerm>F-F*F*F/3+0.3-H</Additional Term>
</DiffusionData>
</DiffusionField>
<DiffusionField>
<DiffusionData>
<FieldName>H</FieldName>
<DiffusionConstant>0.01</DiffusionConstant>
<AdditionalTerm>0.08*F-0.064*H+0.056</Additional Term>
</DiffusionData>
</DiffusionField>

</Steppable>

Functions of F and H are coded using quite naturally looking syntax. The output of the
above simulation with periodic boundary conditions may looks like

It is quite interesting that the slowdown due to interpreting user defined functions is
very small.

Imposing Directed Motion of Cells

One can impose artificial spin flip bias that would have an effect of moving cell in the
direction OPPOSITE to Lambda vector specified below. The magnitude of the lambda

vector determines the “amount” of spin copy bias.

<Plugin Name="ExternalPotential">
<Lambda x="-0.5" y="0.0" z="0.0"/>

</Plugin>
AEexternal_ potential — —A '(Xdestination — XSOUVC@)
. . | | \ —
AE will be negative (favoring spin copy) > ﬂ
N

Connectivity Plugin

Connectivity plugin ensures that 2D cells are not fragmented and are simply
connected. It decreases probability of certain spin flips which are can break
connectedness of a cell. Users can specify energy penalty that will be incured if the
spin copy is to break connectedness of the cell.:

Syntax:
<Plugin Name=“Connectivity”>

<Penalty>100000</Penalty>

</Plugin>

Note: this plugin will not work properly with hexagonal lattice

Cell sorting simulation with and without connectivity plugin

Length Constraint Plugin

Length constraint plugin is used to force cells to keep preferred length along cell's
longest axis (we assume that cells have elliptical shape):

<Plugin Name=“LengthConstraint”>
<LengthEnergyParameters TargetLength="15" LambdalLength="2.0"/>

</Plugin>

The LambdalLength and TargetLength play similar role to LambdaVolume and
TargetVolume from Volume Plugin.

IMPORTANT: Length Constraint Plugin has to be used together with connectivity plugin
or else cells might become fragmented. The applicability of the LengthConstraint and
Connectivity Plugins is limited to 2D simulations.

For more information see
“Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent
remodeling” by Roeland M.H. Merks et al Developmental Biology 289 (2006) 44— 54

Length constraint plugin at work

Note: this plugin will not work properly with hexagonal lattice

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	GGH(Glazier Graner Hogeweg) Model�also known as CPM(Cellular Potts Model)
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Replacing CC3DML with Python
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108

