
CompuCell3D Training Workshop

NIMBioS,

University of Tennessee

Knoxville,

May 18-21 2011

Maciej Swat

James Glazier

Randy Heiland

Julio Belmonte

Mitja Hmeljak

What you will learn during the workshop?

1. What is CompuCell3D?

2. Why use CompuCell3D?

3. Demo simulations

4. Glazier-Graner-Hogeweg (GGH) model – an overview

5. CompuCell3D architecture and terminology

6. XML 101. CC3DML-intro

7. Building first CompuCell3D simulation

8. Visualization package – CompuCell Player

9. Python scripting inside CompuCell3D

10.Building C++ CompuCell3D extension modules – for interested participants

What Is CompuCell3D?

1. CompuCell3D is a modeling environment used to build, test, run and visualize
GGH-based simulations

2. CompuCell3D has built-in scripting language (Python) that allows users to quite
easily write extension modules that are essential for building sophisticated
biological models.

3. CompuCell3D thus is NOT a specialized software

4. Running CompuCell3D simulations DOES NOT require recompilation

5. CompuCell3D model is described using CompuCell3D XML and Python
script(s)

6. CompuCell3D platform is distributed with a GUI front end – CompuCell Player.
The Player provides 2- and 3-D visualization and simulation replay capabilities.

7. CompuCell3D is a cross platform application that runs on Linux/Unix, Windows,
Mac OSX. CompuCell3D simulations can be easily shared

Why Use CompuCell3D? What Are the Alternatives?

1. CompuCell3D allows users to set up and run their simulations within minutes,
maybe hours. A typical development of a specialized GGH code takes orders of
magnitudes longer time.

2. CompuCell3D simulations DO NOT need to be recompiled. If you want to
change parameters (in XML or Python scripts) or logic (in Python scripts) you
just make the changes and re-run the simulation. With hand-compiled
simulations there is much more to do. Recompilation of every simulation is also
error prone and often limits users to those who have significant programming
background.

3. CompuCell3D is actively developed , maintained and supported. On
www.compucell3d.org website users can download manuals, tutorials and
developer documentation. CompuCell3D has approx. 4 releases each year –
some of which are bug-fix releases and some are major

4. CompuCell3D has many users around the world. This makes it easier to
collaborate or exchange modules and results saving time spent on developing
new model.

5. The Biocomplexity Institute organizes training workshops and mentorship
programs. Those are great opportunities to visit Bloomington and learn
biological modeling using CompuCell3D. For more info see
www.compucell3d.org

Why model sharing and standards are important?

1. 99% of modeling done with custom written code is very hard/impossible to reproduce
or verify. Even in best quality publications authors may forget to describe small
details which are actually essential to reproduce the described work.

2. Using standard modeling tools instead of writing your own code improves chances of
your research being reused or improved by other scientists. Note: in certain
situations people might be interested in, precisely, the opposite.

3. When people spend most of their time working on new ideas rather than struggling to
reproduce old results it greatly improves research efficiency

4. Bug tracking/bug bug detection is much more efficient with shared tools than with
custom written ones. Bugs are also better documented for shared software.

5. Developing and sharing modules with other researchers is best way of improving
software modeling tools used by community of researchers

Demo Simulations

GGH(Glazier Graner Hogeweg) Model
also known as CPM(Cellular Potts Model)

(()), ((')) (()), (('))
, '

2

2

(1)

()

()

x x x x
x x

s

v

E J

s S

v V

τ σ τ σ τ σ τ σ

σ σ

σ σ

δ

λ

λ

= −

+ − +

−

∑

(()), ((')) (()), (('))
, '

2

2

(1)

()

()

x x x x
x x

s

v

E J

s S

v V

τ σ τ σ τ σ τ σ

σ σ

σ σ

δ

λ

λ

= −

+ − +

−

∑

invalid attempt valid attempt accept

valid attempt accept

valid attempt accept

valid attempt

reject

The GGH Model Formalism Overview

...
)()(

)1(

22

',
)'(),())'(()),((

++
+−+−

+−=∑

haptchem

vs

xx
xxxx

EE
VvSs

JE

σσσσ

σσστστ

λλ

δ

•Energy minimization formalism
- extended by Graner and Glazier, 1992

•DAH: Contact energy depending on cell types (differentiated cells)

•Metropolis algorithm: probability of configuration change

Brief Explanation of Equation Symbols

σ(x) –denotes id of the cell occupying
position x. All pixels pointed by arrow have
same cell id , thus they belong to the same
cell

τ(σ(x)) denotes cell type of cell with id σ(x). In the
picture above blue and yellow cells have different
cell types and different cell id. Arrows mark
different cell types

Notice that in your model you may (will) have many cells of the same type but with
different id. For example in a simple cellsorting simulation there will be many cells of
type “Condensing” and many cells with type “NonCondensinig”

CompuCell3D terminology

1. Pixel-copy attempt is an event where program randomly picks a lattice site in
an attempt to copy the pixel to a neighboring lattice site.

2. Monte Carlo Step (MCS) consists of series pixel-copy attempts. Usually the
number of pixel copy-attempts in single MCS is equal to the number of lattice
sites, but this is can be customized

3. CompuCell3D Plugin is a software module that either calculates an energy
term in a Hamiltonian or implements action in response to pixel copy (lattice
monitors). Note that not all spin-copy attempts will trigger lattice monitors to run.

4. Steppables are CompuCell3D modules that are run every MCS after all pixel-
copy attempts for a given MCS have been exhausted. Most of Steppables are
implemented in Python. Most customizations of CompuCell3D simulations is
done through Steppables

5. Steppers are modules that are run for those spin-copy attempts that actually
resulted in energy calculation. They are run regardless whether actual pixel-
copy occurred or not. For example cell mitosis is implemented in the form of
stepper.

6. Fixed Steppers are modules that are run every pixel-copy attempt.

During pixel copy
“blue” pixel (newCell) replaces
“yellow” pixel (oldCell)

Change pixel

MCS 21
10000 pixel-

copy attempts

MCS 22 MCS 23 MCS 24
10000 pixel-

copy attempts
10000 pixel-

copy attempts
10000 pixel-

copy attempts

Run

Steppables

Run

Steppables

Run

Steppables

100x100x1 square lattice = 10000 lattice sites (pixels)

CompuCell3D Terminology – Visual Guide

5

1
1

1
1

2

22

2
3

3

3

3

4
4

4
4 4

4

4
4

5

5 5

Nearest neighbors in 2D and their Euclidian distances from the central pixel

Nearest Neighbor Order Number of nearest
neighbors

Euclidian distance – square
lattice

1 4 1
2 4 2
3 4 2
4 8 5
5 4 8

Pixel copy can take place between any order nearest neighbor (although in practice
we limit ourselves to only few first oders).

<NeighborOrder>2</NeighborOrder> 2nd nearest neighbor

Contact energy calculation (see further slides) are also done up to certain order of
nearest neighbors (default is 1)

<NeighborOrder>2</NeighborOrder>

Note: older tags still work but we encourage using new ones - they make more sense

Nearest neighbors in 2D and their Euclidian distances from the central pixel

1

1

1

1

2

22

2

3

3

3

3

4

4

4

4 4

4

4

4 1
1

1
1

1

1

2 2

2

22

2

3

3

3

3

3

3

4

4

4
44

4

4

4

4
4 4

4

2D Square Lattice 2D Hexagonal Lattice

Neighbo
r Order

Number of
Neighbors

Euclidian
Distance

Number of
Neighbors

Euclidian
Distance

1 4 1 6

2 4 6

3 4 2 6

4 8 12

3/2

2 3/6

3/8

14 / 35

CompuCell3D Architecture

Kernel
Runs Metropolis Algorithm

Plugins
Calculate change

in energy

PDE Solvers

Python Interpreter
Biologo Code Generator

Visualization, Steering,
User Interface

Lattice monitoring

Object oriented implementation in C++ and Python

CompuCellPlayer

CompuCell3D
Kernel

Plugins

Python

Typical “Run-Time” Architecture of CompuCell

CompuCell can be run in a
variety of ways:

•Through the Player with or
without Python interpreter

•As a Python script

•As a stand alone
computational kernel+plugins

XML 101

XML stands for eXtensible Markup Language. It is NOT a programming language.
Its main purpose is to standarize information exchange between different
applications.

XML Example:

<Sentence>

<Text>It is too early to be in class</Text>

<FontType>TimesNewRoman</FontType>

<FontSize>12</FontSize>

<DisplayHint Hint=“AddFrameAround”/>

</Sentence>

def configureSimulation(sim):

Snt=ElementCC3D(“Sentence”)

Txt=Snt.ElementCC3D(“Text”,{},”It is to e

Fnt=Snt.ElementCC3D(“FontType”,{},”Ti

fntSize=Snt.ElementCC3D(“FontSize”,{}

Disp=Snt.ElementCC3D(“DisplayHint”,
{“Hint”:”AddFrameAround”})

XML is essentially a definition of hierarchical (tree-like) data structure

<Computer>

<CPU>Pentium

<Frequency Unit=“GHz”>2.4</Frequency>
</CPU>

<Memory>DDR-3

<Frequency Unit=“MHz”>800</Frequency>
</Memory>
…
</Computer>

Computer

CPU

Frequency

Unit=“GHz”

Memory

Frequency

Unit=“MHz”

Pentium

2.4

800

DDR-3

Defining basic properties of the simulation like lattice dimension, number of
Monte Carlo Steps, Temperature and ratio of pixel-copy attempts to number
of lattice sites (Flip2DimRatio). <Potts> section has to be included in every
CompuCell3D simulation
<Potts>
<Dimensions x="71" y="36" z="211"/>
<Steps>10</Steps>
<Temperature>2</Temperature>
<Flip2DimRatio>2</Flip2DimRatio>

</Potts>

Defining properties of Volume Energy term – cell target volume and lambda
parameter:
<Plugin Name=“Volume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>2.0</LambdaVolume>

</Plugin>

...

CompuCell Related Example

Building Your First CompuCell3D Simulation
All simulation parameters are controlled by the config file. The config file
allows you to only add those features needed for your current simulation,

enabling better use of system resources.

Cell

Define Lattice and Simulation Parameters

< CompuCell3D>
<Potts>
<Dimensions x=“100" y=“100" z=“1"/>
<Steps>10</Steps>
<Temperature>2</Temperature>
<Flip2DimRatio>1</Flip2DimRatio>

</Potts>

…

</CompuCell3D>

Define Cell Types Used in the Simulation

Cell
<Plugin Name="CellType">

<CellType TypeName="Medium" TypeId="0"/>
<CellType TypeName=“Light" TypeId="1"/>
<CellType TypeName=“Dark" TypeId="2"/>

</Plugin>

Each CompuCell3D xml file must list all cell types that will used in the simulation

Notice that Medium is listed with TypeId =0. This is both convention and a
REQUIREMENT in CompuCell3D. Reassigning Medium to a different TypeId may
give undefined results. This limitation will be fixed in one of the next CompuCell3D
releases

Define Energy Terms of the Hamiltonian and Their Parameters

Cell

Volume
volume
volumeEnergy(cell)

<Plugin Name="Volume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>1.0</LambdaVolume>
</Plugin>

Surface
area
surfaceEnergy(cell)

<Plugin Name="Surface">
<TargetSurface>21</TargetSurface>
<LambdaSurface>0.5</LambdaSurface>

</Plugin>

Contact
contactEnergy(
cell1, cell2)

<Plugin Name="Contact">
<Energy Type1="Medium" Type2="Medium">0
</Energy>
<Energy Type1="Light" Type2="Medium">16
</Energy>
<Energy Type1="Dark" Type2="Medium">16
</Energy>
<Energy Type1="Light" Type2="Light">16.0
</Energy>
<Energy Type1="Dark" Type2="Dark">2.0
</Energy>
<Energy Type1="Light" Type2="Dark">11.0
</Energy>

</Plugin>

<Plugin Name="Volume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>1.0</LambdaVolume>
</Plugin>

Plugin XML Syntax

...)(... 2 +−+= σσλ VvE v

...)(... 2 +−+= σσλ SsE s

<Plugin Name="Surface">
<TargetSurface>21</TargetSurface>
<LambdaSurface>0.5</LambdaSurface>
</Plugin>

Plugin XML Syntax – Contact Energy

<Plugin Name="Contact">
<Energy Type1="Medium" Type2="Medium">0
</Energy>
<Energy Type1="Light" Type2="Medium">16.0
</Energy>
<Energy Type1="Dark" Type2="Medium">16.0
</Energy>
<Energy Type1="Light" Type2="Light">16
</Energy>
<Energy Type1="Dark" Type2="Dark">2.0
</Energy>
<Energy Type1="Light" Type2="Dark">11.0
</Energy>

</Plugin>

...)1(...
',

)'(),())'(()),((+−+= ∑
xx

xxxxJE σσστστ δ

1-δ

term ensures that pixels belonging to the same cell do not contribute to contact
energy

Laying Out Cells on the Lattice

Using built-in cell field initializer:

<Steppable Type="BlobInitializer">
<Region>

<Radius>30</Radius>
<Center x="40" y="40" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Dark,Light</Types>

</Region>
</Steppable>

This is just an example of cell field initializer. More general ways of cell field
initialization will be discussed later.

NOTE: In actual example Dark cells are called Condensing
and Light cells NonCondensing

Putting It All Together - cellsort_2D.xml
<CompuCell3D>
<Potts>
<Dimensions x="100" y="100" z="1"/>
<Steps>10</Steps>
<Temperature>2</Temperature>
<Flip2DimRatio>1</Flip2DimRatio>

</Potts>

<Plugin Name="CellType">
<CellType TypeName="Medium" TypeId="0"/>
<CellType TypeName=“Light" TypeId="1"/>
<CellType TypeName=“Dark" ="2"/>

</Plugin>

<Plugin Name="Volume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>1.0</LambdaVolume>

</Plugin>

<Plugin Name="Surface">
<TargetSurface>21</TargetSurface>
<LambdaSurface>0.5</LambdaSurface>

</Plugin>

<Plugin Name="Contact">
<Energy Type1="Medium" Type2="Medium">0
</Energy>
<Energy Type1="Light" Type2="Medium">16
</Energy>
<Energy Type1="Dark" Type2="Medium">16
</Energy>
<Energy Type1="Light" Type2="Light">16
</Energy>
<Energy Type1="Dark" Type2="Dark">2.0
</Energy>
<Energy Type1="Light" Type2="Dark">11
</Energy>

</Plugin>

<Steppable Type="BlobInitializer">
<Region>

<Radius>30</Radius>
<Center x="40" y="40" z="0"/>
<Gap>0</Gap>
<Width>5</Width>

<Types>Dark,Light</Types>
</Region>

</Steppable>

</CompuCell3D>
Coding the same simulation in C/C++/Java/Fortran would take you at least 1000 lines
of code…

Putting It All Together - Avoiding Common Errors in XML code

1. First specify Potts section, then list all the plugins and finally list all the
steppables. This is the correct order and if you mix e.g. plugins with steppables
you will get an error. Remember the correct order is

• Potts

• Plugins

• Steppables

2. Remember to match every xml tag with a closing tag

<Plugin>

…

</Plugin>

3. Watch for typos – if there is an error in the XML syntax CC3D will give you an
error pointing to the location of an offending line

4. Modify/reuse available examples rather than starting from scratch – saves a lot of
time

<CompuCell3D>
<Potts>
<Dimensions x="101" y="101" z="1"/>
<Steps>1000</Steps>
<Temperature>5</Temperature>
<Flip2DimRatio>1.0</Flip2DimRatio>
<Boundary_y>Periodic</Boundary_y>
<Boundary_x>Periodic</Boundary_x>
<NeighborOrder>2</NeighborOrder>

</Potts>

<Plugin Name="CellType">
<CellType TypeName="Medium" TypeId="0"/>
<CellType TypeName="Foam" TypeId="1"/>

</Plugin>

<Plugin Name="Contact">
<Energy Type1="Foam" Type2="Foam">50</Energy>
<NeighborOrder>2</NeighborOrder>

</Plugin>

<Steppable Type="PIFInitializer">
<PIFName>foaminit2D.pif</PIFName>

</Steppable>
</CompuCell3D>

Foam Coarsening simulation

CompuCellPlayer – the Best
Way To Run Simulations

Steering bar allows users to start or pause the
simulation, zoom in , zoom out, to switch between
2D and 3D visualization, change view modes (cell
field, pressure field , chemical concentration field,
velocity field etc..)

Player can output multiple
views during single
simulation run – Add
Screenshot function

Information bar

Opening a Simulation in the Player

Go to File->Open Simulation File

Running Simulation From Command Line

You can simply start the simulation with or without Player straight from command line

Open up console (terminal) and type:

./compucell3d.command –i cellsort_2D.xml (on OSX)

./compucell3d.sh –i cellsort_2D.xml (on Linux)

compucell3d.bat –i cellsort_2D.xml (on Windows) – or simply double click Desktop
icon

Running CompuCell3D from command line not only convenient, but sometimes (on
clusters) the only option to run the simulation. For more information about command
line options please see “Running CompuCell3D” manual available at
www.compucell3d.org.

http://www.compucell3d.org/

Running the Simulation

•After typing the XML file in your favorite editor all you need to do to run the
simulation is to open the XML file in the Player and hit “Play” button.

•Screenshots from the simulations are automatically stored in the directory with
name composed of simulation file name and a time at which simulation was started

•As you can see, setting up CompuCell3D simulation was reasonably simple.

•It is quite likely that if you were to code entire simulation in C/C++/Java etc. you
would need much more time.

•We hope that now you understand why using CompuCell3D saves you a lot of time
and allows you to concentrate on biological modeling and not on writing low level
computer code.

•During last year we have improved CompuCell3D performance so that it is on par
with hand-written code. Yet, if you really to have the fastest GGH code in the world
you should write code your own simulation directly in C or even better in assembly
language. Before you do it, make sure you want to spend time rewriting the code
that already exist…

Replacing CC3DML with
Python

Choosing the Right Text Editor

Since developing CompuCell3D simulation requires typing some simple code it is
important that you have the right tools to do that most effectively.

THE BEST EDITOR IS TWEDIT

•On Windows systems we highly recommend Notepad++ editor:

http://notepad-plus.sourceforge.net/uk/site.htm

•On Linux you have lots of choices: Kate (my favorite), gedit, mcedit etc.

•On OSX situation gets a bit complicated, but there is one editor called Smultron
which is good for programming

http://sourceforge.net/projects/smultron/

And as usual, if nothing else works there is always vi, and emacs

http://notepad-plus.sourceforge.net/uk/site.htm
http://sourceforge.net/projects/smultron/

Configuring Notepad++ for use with Python

Go to Settings->Preferences…

On the “Edit Components” tab change Tab Settings to :

Tab size: 4

Replace by space: “checked” Click on the number
to change it

Configuring Kate for use with Python

Go to Settings->Configure Kate …

Click Editing and in the “General” Tab in “Tabulators” section set:

Insert spaces instead of tabulators: “checked”

Tab width: “4 characters”

On “Indentation” tab in “Indentation Properties” section set:

Indentation width: 4 characters

Using Python to describe entire simulations

•Starting with 3.2.0 versions you may get rid of XML file and use Python to describe
entire simulation.

•The advantage of doing so is that you have one less file to worry about but also you
may more easily manipulate simulation parameters. For example if you want contact
energy between two cell types be twice as big as between two other cell types you
could easily implement it in Python. Doing the same exercise with CC3DML is a bit
harder (but not impossible).

•Python syntax used to describe simulation closely mimics CC3DML syntax. There are
however certain differences and inconsistencies caused by the fact that we are using
different languages to accomplish same task. Currently there is no documentation
explaining in detail Python syntax that replaces CC3DML. It will be developed soon

•The most important reason for defining entire simulation in Python is the possibility of
simulation steering i.e. the ability to dynamically change simulation parameters while
simulation is running (available in 3.2.1)

• The way you replace XML in Python is purely mechanical and we will show it on a
simple example

XML is essentially a definition of hierarchical (tree-like) data structure

<Computer>

<CPU>Pentium

<Frequency Unit=“GHz”>2.4</Frequency>
</CPU>

<Memory>DDR-3

<Frequency Unit=“MHz”>800</Frequency>
</Memory>
…
</Computer>

Computer

CPU

Frequency

Unit=“GHz”

Memory

Frequency

Unit=“MHz”

Pentium

2.4

800

Building tree-like structure in a computer language (e.g. Python)

root=createElement(…parameters…)

child1=root.createElement(…parameters…)

child1_of_child1=child1.createElement(…parameters…)

child2=root.createElement(…parameters…)

child1_of_child2=child2.createElement(…parameters…)

Replacing XML with Python syntax:

<CompuCell3D>
<Potts>

<Dimensions x="100" y="100" z="1"/>
<Anneal>10</Anneal>
<Steps>10000</Steps>
<Temperature>10</Temperature>
<NeighborOrder>2</NeighborOrder>

</Potts>
</CompuCell3D>

import CompuCellSetup

from XMLUtils import ElementCC3D

cc3d=ElementCC3D("CompuCell3D")
potts=cc3d.ElementCC3D("Potts")
potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})

potts.ElementCC3D(“Anneal”,{},10)

potts.ElementCC3D("Steps",{},1000)
potts.ElementCC3D("Temperature",{},10)
potts.ElementCC3D("NeighborOrder",{},2)

Notice , by using Python we have even saved few lines

Rules:

•To open XML document, create parent ElementCC3D:

cc3d=ElementCC3D("CompuCell3D")

•For nesting XML elements inside another XML element use the following:

potts=cc3d.ElementCC3D("Potts")

•If the element has attribute use Python dictionary syntax to list the attributes:

potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})

•If the XML element has value but no attributes use the following:

potts.ElementCC3D("NeighborOrder",{},2)

•If the XML element has both value and attributes combine two previous examples

potts.ElementCC3D("NeighborOrder",{“LatticeType”:”Hexagonal”},2)*

*for illustration purposes only

import sys
from os import environ
import string
sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

configureSimulation(sim)

CompuCellSetup.initializeSimulationObjects(sim,simthread)

from PySteppables import SteppableRegistry
steppableRegistry=SteppableRegistry()

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Python-based simulation – template script

But you need to implement configureSimulation function:

Python
def configureSimulation(sim):

import CompuCellSetup

from XMLUtils import ElementCC3D

cc3d=ElementCC3D("CompuCell3D")

potts=cc3d.ElementCC3D("Potts")

potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})

potts.ElementCC3D("Steps",{},1000)

potts.ElementCC3D("Temperature",{},10)

potts.ElementCC3D("NeighborOrder",{},2)

cellType=cc3d.ElementCC3D("Plugin",{"Name":"CellType"})

cellType.ElementCC3D("CellType", {"TypeName":"Medium", "TypeId":"0"})

cellType.ElementCC3D("CellType", {"TypeName":"Condensing", "TypeId":"1"})

cellType.ElementCC3D("CellType", {"TypeName":"NonCondensing", "TypeId":"2"})

volume=cc3d.ElementCC3D("Plugin",{"Name":"Volume"})

volume.ElementCC3D("TargetVolume",{},25)

volume.ElementCC3D("LambdaVolume",{},2.0)

contact=cc3d.ElementCC3D("Plugin",{"Name":"Contact"})

contact.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)

contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},16)

contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Condensing"},2)

contact.ElementCC3D("Energy",{"Type1":"NonCondensing", "Type2":"Condensing"},11)

contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Medium"},16)

contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Medium"},16)

blobInitializer=cc3d.ElementCC3D("Steppable",{"Type":"BlobInitializer"})

blobInitializer.ElementCC3D("Gap",{},0) blobInitializer.ElementCC3D("Width",{},5)

blobInitializer.ElementCC3D("CellSortInit",{},"yes")

blobInitializer.ElementCC3D("Radius",{},40)

next line is very important and very easy to forget about. It registers XML description and points

CC3D to the right XML file (or XML tree data structure in this case)

CompuCellSetup.setSimulationXMLDescription(cc3d)

Continued…

Full example:

Demos/PythonOnlySimulationsExamples/cellsort-2D-player-new-syntax.py

Example: Scaling contact energies – advantage of using Python to configure entire
simulation

energyScale=10

def configureSimulation(sim):
global energyScale

.

.
contact=cc3d.ElementCC3D("Plugin",{"Name":"Contact"})

contact.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)

contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},1.6*energyscale)

contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Condensing"},0.2*energyscale)

contact.ElementCC3D("Energy",{"Type1":"NonCondensing", "Type2":"Condensing"},1.1*energyscale)

contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Medium"},1.6*energyscale)

contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Medium"},1.6*energyscale)

It would be a bit awkward (but not impossible) to have same functionality in CC3DML…

CompuCell Player 101

CompuCell Player – The Basics

•Caution: CompuCellPlayer is still under development so some options may not work
properly however, for the most part this is fully functional ComUCell3D front end and
much better than its predecessor

•For the most part , CompuCell Player is fairly intuitive to use. It is quite important to
get familiar with configure options to the get most out of the Player

•CompuCell Player is a graphical front-end to CompuCell3D computational part. It is
written in Python using PyQt4 and VTK. It also uses C++ wrapped code for
performance critical processing.

•Because of PyQt4 , it provides native look and feel on Linux, OSX and Windows. This
means that dialog and windows will look pretty much the same as other dialogs in your
operating system. Traditionally, Qt tookits look the ugliest on OSX.

•CompuCell Player provides basic visualization capabilities for CompuCell3D
simulations. It automatically detects types of plots for given simulation.

•Saves users the hassle of writing visualization code.

•Helps debugging simulations

•Next version of Player will allow users to write their own visualization pipeline using
VTK standards

Capabilities of CompuCellPlayer– Why You Should Use the Player.

•Provides wide range of visualization - cell field plots, concentration plots, vector
field plots in both 2- and 3-D.

•Allows to store multiple lattice views in a single run. For example users can store
multiple projections of the cell lattice, concentration fields, various 3D views etc… in
a single run.

•Can be run in GUI and silent mode (i.e. without displaying GUI but still saving
screenshots)

•Is ready to be used on clusters that do not have X-server installed. This feature is
essential for doing “production runs” of your simulations.

•Concentration fields and vector fields initialized from Python level can easily be
displayed in the Player. Yes, you can control the Player visualizations from Python
level.

•Configurable from XML level for those users who prefer typing to clicking

Configuring the Player

Most of Player’s configuration options are accessible through Tools-
>Configuration… and Visualization menus.

Visualization Menu allows you to choose whether in 2D cell borders should be
displayed or not (in 3D borders are not drawn at all). You can also select to
draw isocontour lines for the concentration plots and turn on and off displaying
of the information about minimum and maximum concentration.

Screen update frequency is a parameter that defines how often (in units of MCS)
Player screen should be updated. Note, if you choose to update screen too often
(say every MCS) you will notice simulation speed degradation because it does take
some time to draw on the screen. You may also choose not to output any files by
checking “Do not output results” check-box. Additionally you have the option to
output simulation data in the VTK format for later replay.

Screenshot frequency determines how often screenshots of the lattice views will be
taken (currently Player outputs *.png files) .

Screenshots

Screenshots are taken every “Screenshot Frequency” MCS

By default Player will store screenshots of the currently displayed lattice view.

In addition to this users can choose to store additional screenshots at the same time.
Simply switch to different lattice view, click camera button. Those additional
screenshots will be taken irrespectively of what Player currently displays.

Once you selected additional screenshots it is convenient to save screenshot
description file (it is written automatically by the Player, user just provide file name).
Next time you decide to run CompuCell3D you may just use command

compucell3d.sh -s screenshotDesctiptionFile_cellsort.txt -i cellsort_2D.xml

This will run simulation where stored screenshots will be taken

Click camera button
on select lattice views Notice, you may change

plot types as well

When you picked lattice views,
you may save screenshot
description file for later reuse

Configure->cell type colors…

Click here to change
color for cell type 1

Enter cell type number
here

Click here to change
cell border color

Click here to change
isocontour color

To enter new cell type
click “Add Cell Type”
button

Configure->Cell types invisible in 3D…

Sometimes when you open up the simulation and switch to 3D view you may find that your
simulation looks like solid a parallelepiped. This might be due to a box made out of frozen
cells that hides inside other cells. In this case you need to make the box invisible.
Type cell type number that you want to be invisible in 3D in this box. Notice, by
default Player will not display Medium (type 0). Here we also make types 4 and 5
invisible

Steering the simulation

CompuCell3D Player will allow you to change most of the parameters of the XML file
while the simulation is running.

Use steering panel to change simulation
parameters. Make sure you pause
simulation before doing this

Target volume = 100
Screenshot was taken before simulation had
time to equilibrate

Target volume = 25

Using different kind of lattices with CompuCell3D

•Current version of CompuCell3D allows users to run simulations on square and
hexagonal lattices.

•Other regular geometries (e.g. triangular) can be implemented fairly easily

•Some plugins work on square lattice only - e.g. local connectivity plugin

•Switching to hexagonal lattice requires only one line of code
in the Potts section

<LatticeType>Hexagonal</LatticeType>

•Model parameters may need to be adjusted when going from one type lattice to
another. This is clearly an inconvenience but we will try to provide a solution in the
future

• Different lattices have varying degrees of lattice anisotropy. In many cases using
lower anisotropy lattice is desired (e.g. foam coarsening simulation on hexagonal
lattice). It is also important to check results of your simulation on different kind of
lattices to make sure you don’t have any lattice-specific effects.

•Compucell3D makes such comparisons particularly easy

Nearest neighbors in 2D and their Euclidian distances from the central pixel

1

1

1

1

2

22

2

3

3

3

3

4

4

4

4 4

4

4

4 1
1

1
1

1

1

2 2

2

22

2

3

3

3

3

3

3

4

4

4
44

4

4

4

4
4 4

4

2D Square Lattice 2D Hexagonal Lattice

Neighbo
r Order

Number of
Neighbors

Euclidian
Distance

Number of
Neighbors

Euclidian
Distance

1 4 1 6

2 4 6

3 4 2 6

4 8 12

3/2

2 3/6

3/8

14 / 35

SquareLattice:

Square in 2D

Cube in 3D

Hexagonal lattice:

Hexagon in 2D

Rhombic dodecahedron in 3D

Cell-sorting simulation on square and hexagonal lattices

1000 MCS 1000 MCS

The simulation parameters were kept the same for the two runs

Cell Attributes

CompuCell3D cells have a default set of attributes:

Volume, surface, center of mass position, cell id etc…

Additional attributes are added during runtime:

List of cells neighbors, polarization vector etc…

To keep parameters up-to-date users need to declare appropriate plugins in the
CC3DML configuration file.

For example, to make sure surface of cell is up-to-date users need to make sure that
SurfaceTracker plugin is registered:

Include :

<Plugin Name=“SurfaceTracker”/>

or use Surface plugin which will implicitly call SurfaceTracker

<Plugin Name=“Surface”>

<LambdaSurface>0.0</LambdaSurface>

<TargetSurface>25.0</TargetSurface>

</Plugin>

But here surface tracking costs you extra calculation of surface energy term:

E=…+λ(s-ST)2 +…

More Flexible Specification of Surface and Volume Constraints

<Plugin Name="VolumeFlex">
<VolumeEnergyParameters CellType=“Amoeba" TargetVolume=“150" LambdaVolume="10"/>
<VolumeEnergyParameters CellType=“Bacteria" TargetVolume=“10" LambdaVolume=“50"/>

</Plugin>

<Plugin Name=“SurfaceFlex">
<SurfaceEnergyParameters CellType=“Amoeba" TargetSurface=“60" LambdaSurface="10"/>
<SurfaceEnergyParameters CellType=“Bacteria" TargetSurface=“12" LambdaSurface=“20"/>

</Plugin>

You may specify different volume and surface constraints for different cell types. This
can be done entirely at the XML level.

2)(τττλ VvE V −=

2)(τττλ SsE S −=

Type dependent quantities

Even More Flexible Specification of Surface and Volume Constraints

<Plugin Name="VolumeLocalFlex“/>

<Plugin Name=“SurfaceLocalFlex“/>

2)(σσσλ VvE V −=

2)(σσσλ SsE S −=

Notice that all the parameters are local to a cell. Each cell might have different target
volume (target surface) and different λ

volume (surface). You will need to use Python to
initialize or manipulate those parameters while simulation is running. There is currently
no way to do it from XML level. I am not sure it would be practical either.

Tracking Cell Neighbors

Sometimes in your simulation you need to have access to a current list of cell neighbor.
CompuCell3D makes this task easy:

<Plugin Name=“NeighborTracker“/>

Inserting this statement in the plugins section of the XML will ensure that at any given
time the list of cell neighbors will be accessible to the user. You can access such a list
either using C++ or Python. In addition to storing neighbor list , a common surface area
of a cell with its neighbors is stored.

Tracking Center of Mass of Each Cell

Including

<Plugin Name=“CenterOfMass“/>

statement in your XML code (remember to put it in the correct place) will enable cell
centroid tracking:

∑
−

=
pixeli

iCM
C xx ∑

−

=
pixeli

iCM yy ∑
−

=
pixeli

iCM
C zz

To get a center of mass of cell you will need to divide centroids by the cell volume:

V
xx CM

C

CM =
V

yy CM
C

CM =
V

zz CM
C

CM =

Practical way of guessing contact energy hierarchy

Basic facts:

•Cells that have high contact energies between themselves, when they come together
they increase overall energy of the system. Such cells tend to stay away from each
other.

•Cells that have low contact energies between themselves, when they come together
they decrease overall energy of the system. Such cells tend to cluster together.

•Those two rules are helpful when determining contact energy hierarchy. Simply cells of
one type like to be surrounded by those cells with which the contact energy is the
lowest.

•And vice versa, if you want to make two cells not to touch each other, make sure that
contact energy between them is high.

Examples of different contact energy hierarchies

Cell sorting simulation where cells of both
type like to be surrounded by medium. That
is contact energy between Condensing and
Medium as well as between
NonCondensing and Medium is very low

JCM =JNM <JNN <JCC <JNC

Examples of different contact energy hierarchies

Cell sorting simulation where cells of both
type do not like to be surrounded by
medium and cells of homotypic cells do not
like each other

JNC <<JNN =JCC <JCM =JNM

XML initializers - UniformInitializer

You may initialize simple geometries of cell clusters directly from XML

<Steppable Type=“UniformInitializer">
<Region>

<BoxMin x=“10” y=“10” z=“0”/>
<BoxMax x=“90” y=“90” z=“1”/>

<Types>Condensing,NonCondensing</Types>

<Gap>0</Gap>
<Width>5</Width>

</Region>

</Steppable>
Specify box size and position

Specify cell types – here the box will be filled
with cells whose types are randomly chosen
(either 1 or 2)

Choose cell size and space between cells

<Steppable Type=“UniformInitializer">
<Region>

<BoxMin x=“10” y=“10” z=“0”/>
<BoxMax x=“90” y=“90” z=“1”/>

<Types>Condensing</Types>

<Gap>0</Gap>
<Width>5</Width>

</Region>
</Steppable>

Notice, we have only specified one type (Condensing) thus all the cells are of the same
type

<Steppable Type=“UniformInitializer">
<Region>

<BoxMin x=“10” y=“10” z=“0”/>
<BoxMax x=“90” y=“90” z=“1”/>

<Types>Condensing,NonCondensing</Types>

<Gap>2</Gap>
<Width>5</Width>

</Region>
</Steppable>

Introducing a gap between cells

<Steppable Type="UniformInitializer">
<Region>

<BoxMin x="10" y="10" z="0"/>
<BoxMax x="40" y="40" z="1"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Condensing,NonCondensing</Types>

</Region>
<Region>

<BoxMin x="50" y="50" z="0"/>
<BoxMax x="80" y="80" z="1"/>
<Gap>0</Gap>
<Width>3</Width>
<Types>Condensing</Types>

</Region>
</Steppable>

Notice, we have defined two regions with different cell sizes and different types

<Steppable Type="BlobInitializer">
<Region>

<Radius>30</Radius>
<Center x="40" y="40" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Condensing,NonCondensing</Types>

</Region>

<Region>
<Radius>20</Radius>
<Center x="80" y="80" z="0"/>
<Gap>0</Gap>
<Width>3</Width>
<Types>Condensing</Types>

</Region>
</Steppable>

XML initializers - BlobInitializer

Defining two regions with different cell sizes and different types for BlobInitializer is
very similar to the same task with UniformInitilizer. There are some new XML tags
which differ the two initializers.

Population control using initializers

When using BlobInitializer of UniformInitializer you may list same type many times:
<Types>Condensing,NonCondensing,NonCondensing,NonCondensing</Types>

The number of cells of a given type will be proportional to the number of times a given
type is listed inside the <Types> tag.

In the above example the 3/4 of cells will be NonCondensing and 1/4 will be
Condensing

<Steppable Type="BlobInitializer">
<Region>
<Radius>40</Radius>
<Center x="50" y="50" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>

Condensing,
NonCondensing,
NonCondensing,
NonCondensing

</Types>
</Region>

</Steppable>

Using PIFInitilizer

Use PIFInitializer to create sophisticated initial conditions. PIF file allows you to
compose cells from single pixels or from larger rectangular blocks

The syntax of the PIF file is given below:

Cell_id Cell_type x_low x_high y_low y_high z_low z_high

Example (file: amoebae_2D_workshop.pif):

0 amoeba 10 15 10 15 0 0

This will create rectangular cell with x-coordinates ranging from 10 to 15
(inclusive), y coordinates ranging from 10 to 15 (inclusive) and z coordinates
ranging from 0 to 0 inclusive.

<Steppable Type="PIFInitializer">
<PIFName>amoebae_2D_workshop.pif</PIFName>

</Steppable>

0,0

Let’s add another cell:

Example (file: amoebae_2D_workshop.pif):

0 Amoeba 10 15 10 15 0 0
1 Bacteria 35 40 35 40 0 0

Notice that new cell has different cell_id (1) and different type (Bacterium)

Let’s add pixels and blocks to the two cells
from previous example:

Example (file: amoebae_2D_workshop.pif):

0 Amoeba 10 15 10 15 0 0
1 Bacteria 35 40 35 40 0 0
0 Amoeba 16 16 15 15 0 0
1 Bacteria 35 37 41 45 0 0

To add pixels, start new pif line with existing cell_id (0 or 1 here) and specify pixels.

This is what happens when you do not reuse
cell_id

Example (file: amoebae_2D_workshop.pif):

0 Amoeba 10 15 10 15 0 0
1 Bacteria 35 40 35 40 0 0
0 Amoeba 16 16 15 15 0 0
2 Bacteria 35 37 41 45 0 0

Introducing new cell_id (2) creates new cell.

PIF files allow users to specify arbitrarily complex cell shapes and cell arrangements.
The drawback is, that typing PIF file is quite tedious task and , not recommended.
Typically PIF files are created using scripts.

In the future release of CompuCell3D users will be able to draw on the screen cells or
regions filled with cells using GUI tools. Such graphical initialization tools will greatly
simplify the process of setting up new simulations. This project has high priority on our
TO DO list.

PIFDumper - yet another way to create initial condition

PIFDumper is typically used to output cell lattice every predefined number of MCS. It is
useful because, you may start with rectangular cells, “round them up” by running
CompuCell3D , output cell lattice using PIF dumper and reload newly created PIF file
using PIFInitializer.

<Steppable Type="PIFDumper“ Frequency=“100”>
<PIFName>amoebae</PIFName>

</Steppable>

Above syntax tells CompuCell3D to store cell lattice as a PIF file every 100 MCS.

The files will be named amoebae.100.pif , amoebae.200.pif etc…

<Steppable Type="PIFInitializer">
<PIFName>amoebae.100.pif</PIFName>

</Steppable>

To reload file , say amoebae.100.pif use already familiar syntax:

PIFTracer and other PIF Generators

PIFTracer (works only on OSX) allows users to “paint” cells using experimental
pictures as a template. Currently it does not support PIF format for compartmental
cells but we developed short Python script that provides temporary fix.

We are working on another tool that can generate PIF file based on colors of the
underlying gif image. That is the color of the cells in the image determines cell type.

Chemotaxis

Basic facts

•Chemotaxis is defined as cell motion induced by a presence (gradient) of a chemical.

•In GGH formalism chemotaxis is implemented as a spin copy bias which depends on
chemical gradient.

•Chemotaxis was first introduced to GGH formalism by Paulien Hogeweg from University
of Utrecht, Netherlands

•In CompuCell3D Chemotaxis plugin provides wide range of options to support different
modes of chemotaxis.

•Chemotaxis plugin requires the presence of at least one concentration field. The fields
can be inserted into CompuCell3D simulation by means PDE solvers or can be created,
initialized and managed explicitly from the Python level

Chemotaxis Term – Most Basic Form

))()((sourcendestinatiochem xcxcE −−=Δ λ

If concentration at the spin-copy destination pixel (c(xdestination)) is higher than
concentration at the spin-copy source (c(xsource)) AND λ

is positive then ΔE is negative
and such spin copy will be accepted. The cell chemotacts up the concentration gradient

x

C(x)

Lower concentration
Higher concentration

Chemorepulsion can be obtained by making λ

negative

Alternative Formulas For Chemotaxis Energy

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

−=Δ
)(

)(
)(

)(

source

source

ndestinatio

ndestinatio
chem xca

xc
xca

xcE λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

−
+⋅

−=Δ
1)(

)(
1)(

)(

source

source

ndestinatio

ndestinatio
chem xca

xc
xca
xcE λ

Chemotaxis - XML Examples

<Plugin Name="Chemotaxis">
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">

<ChemotaxisByType Type="Amoeba" Lambda="300"/>
<ChemotaxisByType Type="Bacteria" Lambda="200"/>

</ChemicalField>
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">

<ChemotaxisByType Type="Amoeba" Lambda=“-300"/>
</ChemicalField>
</Plugin>

))()((sourcendestinatiochem xcxcE −−=Δ λ

Notice , that different cell types may have different chemotactic properties. For more
than 1 chemical fields the change of chemotaxis energy expression is given below:

∑
−

−−=Δ
fieldi

sourceindestinatioiichem xcxcE))()((λ

Chemotaxis - XML Examples continued

<Plugin Name="Chemotaxis">
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">

<ChemotaxisByType Type="Amoeba" Lambda="300"/>
<ChemotaxisByType Type="Bacteria" Lambda="200"/>

</ChemicalField>
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">

<ChemotaxisByType Type="Amoeba" Lambda=“-300“ SaturationCoef=“2.0”/>
</ChemicalField>
</Plugin>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

−=Δ
)(

)(
)(

)(

source

source

ndestinatio

ndestinatio
chem xca

xc
xca

xcE λ

<Plugin Name="Chemotaxis">
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">

<ChemotaxisByType Type="Amoeba" Lambda="300"/>
<ChemotaxisByType Type="Bacteria" Lambda="200"/>

</ChemicalField>
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">

<ChemotaxisByType Type="Amoeba" Lambda=“-300“ SaturationLinearCoef=“2.0”/>
</ChemicalField>
</Plugin>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

−
+⋅

−=Δ
1)(

)(
1)(

)(

source

source

ndestinatio

ndestinatio
chem xca

xc
xca
xcE λ

))()((sourcendestinatiochem xcxcE −−=Δ λ

Chemotaxis - XML Examples continued

PDE Solvers

•CompuCell3D has built-in diffusion , reaction diffusion and advection diffusion PDE
solvers. Those are, probably most frequently used solver in GGH modeling.

•CompuCell3D uses explicit (unstable but fast) method to solve the PDE. Constantly
changing boundary conditions practically rule out more robust, but slow implicit solvers.

•Because of instability users should make sure that their PDE parameters do not
produce wrong results (which could manifest themselves as “rough” concentration
profiles, “insane” concentration values, NaN’s - Not A Number etc…). Future release of
CompuCell3D will provide tools to detect potential PDE instabilities.

•Additional solvers can be implemented directly in C++ or using BioLogo. BioLogo is
especially attractive because it takes as an input human readable PDE description and
generates fast C++ code.

•Typically a concentration from the PDE solver is read by other CompuCell3D modules
to adjust cell properties. Currently the best way of dealing with this is through Python
interface.

Flexible Diffusion Solver

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>

</DiffusionData>
</DiffusionField>

</Steppable>

Define diffusion field

Read-in initial condition

Initial Condition File Format:

x y z concentration

Example:

27 27 0 2000.0

45 45 0 0.0 …

Define diffusion parameters

Two-pulse initial condition

Initial condition (diffusion_2D.pulse.txt):

5 5 0 1000.0
27 27 0 2000.0

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<DoNotDiffuseTo>Medium</DoNotDiffuseTo>
<ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>

</DiffusionData>
</DiffusionField>

</Steppable>

You may specify diffusion regions

FGF will diffuse inside big cell and will not go to Medium

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<DoNotDiffuseTo>Wall</DoNotDiffuseTo>
<ConcentrationFileName>diffusion_2D_wall.pulse.txt</ConcentrationFileName>

</DiffusionData>
</DiffusionField>

</Steppable>

FGF will not diffuse to the Wall

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<!--DoNotDiffuseTo>Wall</DoNotDiffuseTo-->
<ConcentrationFileName>diffusion_2D_wall.pulse.txt</ConcentrationFileName>

</DiffusionData>
</DiffusionField>

</Steppable>

Now FGF diffuses everywhere

PDE Solver Caller Plugin

By default PDE solver is called once per MCS. You may call it more often, say 3 times
per MCS by including PDESolverCaller plugin:

<Plugin Name="PDESolverCaller">
<CallPDE PDESolverName="FlexibleDiffusionSolverFE" ExtraTimesPerMC=“2"/>

</Plugin>

Notice, that you may include multiple CallPDE tags to call different PDESolvers with
different frequencies.

You typically use this plugin to avoid numerical instabilities when working with large
diffusion constants

Secretion

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>

</DiffusionData>
<SecretionData>

<Secretion Type="Amoeba">20</Secretion>
</SecretionData>

</DiffusionField>
</Steppable>

We turned diffusion off and have cells of type
Amoba secrete FGF. Secretion takes place at every
pixel belonging to Amoeba cells. At each MCS we
increase the value of the concentration at those
pixels by 20 units.

CompuCell3D offers several modes for including secretion in your simulations. Let’s look
at concrete examples:`

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>

</DiffusionData>
<SecretionData>

<SecretionOnContact Type=“Amoeba" SecreteOnContactWith=“Medium">20.1</SecretionOnContact>
</SecretionData>
</DiffusionField>

</Steppable>

Secretion will take place in those pixels
belonging to Amoeba cells that have contact
with Medium

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>

</DiffusionData>
<SecretionData>
<SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">20.1</SecretionOnContact>

</SecretionData>
</DiffusionField>

</Steppable>

Secretion will take place in those pixels
belonging to Medium cells that have contact
with Amoeba

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>

</DiffusionData>
<SecretionData>
<SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">20.1</SecretionOnContact>
<SecretionOnContact Type="Bacteria“ SecreteOnContactWith="Bacteria">10.1</SecretionOnContact>
<SecretionOnContact Type="Bacteria" SecreteOnContactWith="Medium">5.1</SecretionOnContact>

</SecretionData>
</DiffusionField>

</Steppable>

1.Secretion will take place in those pixels
belonging to Medium cells that have contact
with Amoeba.

2.There will be secretion in pixels of Bacteria
cells that have contact with medium.

3.Secretion will also take place in those pixels
of bacteria cells that have contact with other
bacteria cells

Reaction-Diffusion set of PDE’s

()

()

()

21
1 1 1 1 2

22
2 2 2 1 2

2
1 2

, , ,

, , ,

, , ,

N

N

N
N N N N

c = D c f c c c
t

c = D c f c c c
t

c = D c f c c c
t

∂
∇ +

∂
∂

∇ +
∂

∂
∇ +

∂

K

K

M

K

Solving general set of above PDE’s can be tricky because functions ‘f’ can have
arbitrary form. There are two ways to deal with this problem:

1. For each set of PDE’s write new PDE solver. This is not a bad idea if you can do
it “on the fly”. If you can write a code that automatically generates and compiles
PDE solver you will see no performance degradation

2. Use fast math expression parser that will interpret mathematical expressions
during run time

CompuCell3D 3.4.1 uses the second solution. The reason was that it was the
simplest to implement and also one does not have to bother about compilers
installed on users machines. However such PDE solver will not be as fast as the
compiled one

2 3

2

0.01 /3+0.3-

0.01 0.08 0.064 0.056

F = F F F H
t
H = H F H
t

∂
∇ + −

∂
∂

∇ + − +
∂

Let’s consider a simple example

<Steppable Type="ReactionDiffusionSolverFE">

<DiffusionField>

<DiffusionData>

<FieldName>F</FieldName>

<DiffusionConstant>0.01</DiffusionConstant>

<ConcentrationFileName>Demos/diffusion/FN.pulse.txt</ConcentrationFileName>

<AdditionalTerm>F-F*F*F/3+0.3-H</AdditionalTerm>

</DiffusionData>

</DiffusionField>

<DiffusionField>

<DiffusionData>

<FieldName>H</FieldName>

<DiffusionConstant>0.01</DiffusionConstant>

<AdditionalTerm>0.08*F-0.064*H+0.056</AdditionalTerm>

</DiffusionData>

</DiffusionField>

</Steppable>

Functions of F and H are coded using quite naturally looking syntax. The output of the
above simulation with periodic boundary conditions may looks like

It is quite interesting that the slowdown due to interpreting user defined functions is
very small.

Imposing Directed Motion of Cells

One can impose artificial spin flip bias that would have an effect of moving cell in the
direction OPPOSITE to Lambda vector specified below. The magnitude of the lambda
vector determines the “amount” of spin copy bias.

<Plugin Name="ExternalPotential">
<Lambda x="-0.5" y="0.0" z="0.0"/>

</Plugin>

)(_ sourcendestinatiopotentialexternal xxE −⋅−=Δ λ

λΔE will be negative (favoring spin copy)

Connectivity Plugin

Connectivity plugin ensures that 2D cells are not fragmented and are simply
connected. It decreases probability of certain spin flips which are can break
connectedness of a cell. Users can specify energy penalty that will be incured if the
spin copy is to break connectedness of the cell.:

Syntax:

<Plugin Name=“Connectivity”>

<Penalty>100000</Penalty>

</Plugin>

Note: this plugin will not work properly with hexagonal lattice

Cell sorting simulation with and without connectivity plugin

Length Constraint Plugin

Length constraint plugin is used to force cells to keep preferred length along cell’s
longest axis (we assume that cells have elliptical shape):

<Plugin Name=“LengthConstraint”>

<LengthEnergyParameters TargetLength=“15” LambdaLength=“2.0”/>

</Plugin>

The LambdaLength and TargetLength play similar role to LambdaVolume and
TargetVolume from Volume Plugin.

IMPORTANT: Length Constraint Plugin has to be used together with connectivity plugin
or else cells might become fragmented. The applicability of the LengthConstraint and
Connectivity Plugins is limited to 2D simulations.

For more information see
“Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent
remodeling” by Roeland M.H. Merks et al Developmental Biology 289 (2006) 44– 54

Length constraint plugin at work

Note: this plugin will not work properly with hexagonal lattice

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	GGH(Glazier Graner Hogeweg) Model�also known as CPM(Cellular Potts Model)
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Replacing CC3DML with Python
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108

