
Maciej Swat
Biocomplexity Institute

Indiana University
Bloomington, IN 47405

USA

IU Team: Susan Hester, Julio Belmonte, Abbas Shirinifard, Ryan Roper, Alin Comanescu,
Benjamin Zaitlen, Randy Heiland, Dr. Dragos Amarie, Dr. Scott Gens, Dr. James A. Glazier, Dr.
James Sluka, Dr. Sherry Clendenon, Dr. Mitja Hmeljak, Dr. Srividhya Jayaraman, Dr. Gilberto
Thomas

Support: EPA, NIH/NIGMS, NAKFI, Indiana University

Developing Multi-Scale, Multicell Developmental and Biomedical
Simulations with CompuCell3D

Bloomington, 2011

Introduction to CompuCell3D

What will you learn during the workshop?

1. What is CompuCell3D?

2. Why use CompuCell3D?

3. Demo simulations

4. Glazier-Graner-Hogeweg (GGH) model – review

5. CompuCell3D architecture and terminology

6. XML 101. CC3DML-intro

7. Building Your First CompuCell3D simulation

8. Visualization – CompuCell Player

9. Python scripting in CompuCell3D

10.Building C++ CompuCell3D extension modules – for interested participants

What Is CompuCell3D?

1. CompuCell3D is a modeling environment to build, test, run and visualize
multiscale, multi-cell GGH-based simulations.

2. CompuCell3D has built-in stanadard scripting language (Python) that allows
users to quite easily write extension modules that are essential for building
sophisticated biological models.

3. CompuCell3D thus is NOT a hard-coded simulation of a specific biological
system.

4. Running CompuCell3D simulations DOES NOT require recompilation.

5. CompuCell3D models described using CompuCell3D XML and Python script(s).

6. CompuCell3D platform is distributed with a GUI front end – CompuCell Player
for 2- Dand 3-D visualization and simulation replay.

7. CompuCell3D provides a specialized model editor (Twedit) and initial condition
generator (PifTracer).

8. CompuCell3D is a cross platform application that runs on Linux/Unix, Windows,
Mac OSX.

9. CompuCell3D simulations can be easily shared and combined.

Model Specification

User CC3D
Player

Scheduler

Reaction
Kinetics
Solvers

(SoSLib)

Multicell
(GGH)

PDE (Solvers)
Python Scripts

Your Modules
Here

Output
Modules

Steering
Tool

FE Solvers

PIFTracer

ModelEditor

CC3DML
Scripts

Python and
PyLibraries

SBW Tools

SBML Scripts

Key
User Defined
CC3D Open Source

Freestanding Beta
Version
Under

Development

3rd Party Open Source

Experimental
Microscopy Images

CC3D Architecture

Why Use CompuCell3D? What Are the Alternatives?
1. CompuCell3D allows users to set up and run their simulations in minutes to

hours rather than weeks to months for custom code.

2. Most CompuCell3D simulations DO NOT need to be recompiled. To change
parameters (in XML or Python scripts) or logic (in Python scripts) you just make
the changes in the script or on the fly and run. Recompilation of hard-coded
simulation is error prone and is accessible only to users with significant
programming background.

3. CompuCell3D is actively developed , maintained and supported. The
www.compucell3d.org website provides manuals, tutorials and developer
documentation. CompuCell3D has approx. 4 releases each year .

4. CompuCell3D has many users around the world, faciltiating collaboration and
module exchange, saving time when developing new models.

5. The Biocomplexity Institute organizes training workshops and mentorship
programs. Those are great opportunities to learn biological modeling using
CompuCell3D. For more info see www.compucell3d.org

1. 99% of modeling done with custom written code is hard or impossible to reproduce or
verify. In publications ,even ones including full code listings, authors often forget to
describe details which are essential to reproducing their described work.

2. Using standard modeling tools improves the chances of your research being
accepted and further refined by other scientists.

3. Standards allow people to spend more time working on new ideas and less
struggling to reproduce old results .

4. Standards greatly improves research efficiency.

5. Bug tracking and detection are much more efficient with shared tools than with
custom written ones. Bugs are also better documented for shared software.

6. Developing and sharing modules with other researchers is the best way to improve
software modeling tools used by the research community.

Why are model sharing and standards important?

Demo CompuCell3D Simulations

Key properties:
Cells live on a lattice.
Each cell occupies many lattice sites.
Each cell has a unique index.
Each cell has a type—can have many cells of each type. E.g. a simple cell
sorting simulation has many cells of type “Condensing” and many of type
“NonCondensinig”

Review of the GGH Model

The GGH Model Formalism Overview
•Configuration of Cells Evolves to Locally Minimize the Effective Energy, primarily by
satisfying constraints) (Graner and Glazier, 1992)

•Key concept is differential adhesion between components: Contact energy
depending on cell types (differentiated cells)

() ()() () () ()()

() () ()() ...

)'(),(1))'(()),((

2
Target

2
Target

neighbors
',

+++−

+−+−=

∑

∑∑

haptchemv

s
xx

EEVv

SsxxxxJE

σ

σ

σσσλ

σσσλσσδστστ
rr

rrrr

σ(x) –denotes id of the cell
occupying position x. All pixels
pointed to by the arrow have same
cell id, and belong to the same cell

τ(σ(x)) denotes the cell type of cell with id σ(x). In the
picture above blue and yellow cells have different cell
types and different cell id. Arrows mark different cell types

The GGH Model Formalism Overview—Dynamics

•To simulate the cytoskeleton-driven extension and retraction of cell membranes
(including pseudopods, filopodia and lamellipodia). The GGH algorithm tries
randomly to extend and retract cell boundaries one pixel at a time.

•At each attempt, it calculates the new configuration Effective Energy and accepts
the new configuration according to the Metropolis algorithm: probability of
configuration change

•Result is movement with velocity proportional to the gradient of the Energy (or
linear in the applied force).

•Configurations evolve to satisfy the constraints.

•When constraints conflict, evolve to balance errors.

invalid attempt valid attempt accept

valid attempt accept

valid attempt accept

valid attempt

reject

More Detail on Pixel Copy Attempts

CompuCell3D Terminology and Relation to GGH

CompuCell has two basic time scales a fast scale and a slow scale:

Fast Scale:

• A Pixel-copy attempt is an event where program randomly picks a lattice
site and attempts to copy the pixel to a neighboring lattice site.

• CompuCell3D Plugins either calculate terms in the Effective Energy or
implement actions in response to accepted pixel copies (Lattice Monitors).
Most Plugins are coded in C++ for speed.

Slow Scale:

• A Monte Carlo Step (MCS) consists of a number of pixel-copy attempts.
equal to the number of lattice sites.

• CompuCell3D Steppables at the end of each MCS and at the beginning and
end of simulations. Most customizations of CompuCell3D simulations use
user-written Python Steppables

During pixel copy
“blue” pixel (newCell) replaces
“yellow” pixel (oldCell)

Change pixel

MCS 21
10000 pixel-

copy attempts

MCS 22 MCS 23 MCS 24
10000 pixel-

copy attempts
10000 pixel-

copy attempts
10000 pixel-

copy attempts

Run

Steppables

Run

Steppables

Run

Steppables

100x100x1 square lattice = 10000 lattice sites (pixels)

CompuCell3D Terminology – Visual Guide

5

1
1

1
1

2

22

2
3

3

3

3

4
4

4
4 4

4

4
4

5

5 5

Nearest neighbors in 2D and their Euclidian distances from the central pixel

Nearest Neighbor Order Number of nearest
neighbors

Euclidian distance – square
lattice

1 4 1
2 4 2
3 4 2
4 8 5
5 4 8

Pixel copies could take place between any order neighbors.

In practice we use only the few first neighbors (1-4).

To specify a pixel-copy range of 2 in a simulation insert the CC3DML command :

<NeighborOrder>2</NeighborOrder>

In the <Potts></Potts> section of the simulation .

Contact energy calculations have their range specified separately

To specify an interaction range of 3 in a simulation insert the CC3DML command :

<NeighborOrder>3</NeighborOrder>
In the <Plugin Name="Contact"> </Plugin> section of the simulation .

Hexagonal Lattices

2D Square Lattice 2D Hexagonal Lattice

Neighbo
r Order

Number of
Neighbors

Euclidian
Distance

Number of
Neighbors

Euclidian
Distance

1 4 1 6

2 4 6

3 4 2 6

4 8 12

3/2

2 3/6

3/8

14 / 35

To reduce intrinsic lattice anisotropy of the square lattice, we can use a hexagonal
lattice Instead.

The area/volume of each pixel is fixed to 1, so the length scale changes when you
move from square to hex lattices.

To specify a simulation on a hex lattice, insert the CC3DML command :

<LatticeType>Hexagonal</LatticeType>

In the <Potts></Potts> section of the simulation .

WARNING: a few functions may still not
work properly for hex lattices.

Cell Sorting—The Simplest Model

16

Model Elements

Object
Properties

& Interactions

Dynamics
(Processes)

Initial
Conditions

Objects

Simulate the evolution of a randomly
mixed aggregate of two mesenchymal
cell types due to Differential Adhesion
and random cell motility.

Question—how does the outcome
depend on the relative adhesion
energies between the cell types and
between the cells and medium?

Cell Sorting—The
Simplest Model

Biological
Observations

• Properties, Behaviors:
– Cells have Fixed Volumes and Fixed Membrane Areas
– Medium has Unconstrained Volume and Surface Area
– Cells are Adhesive
– Cells have Intrinsic Random Motility

• Interactions:
– Cells Adhere to each other and to Medium with an Energy/Area

which Depends on Cell Type (simulating different types or
densities of cadherins on each Cell Type)

Cell Sorting—The Simplest Model
Define Qualitative Verbal Model

• Objects: Cells, Medium (Generalized Cell)

• Dynamics:
– Standard Potts Dynamics

• Initial Conditions:
– Cells in a Blob Surrounded by Medium
– In Blob, Cells Randomly Mixed

Cell Sorting—The Simplest Model
Refine Description to be Quantitative
Three Cell Types: More Cohesive, Less Cohesive, Medium

Random Blob Initial Conditions or
Adjacent Domains

Outcome Depends on Js

() (){ }

()()∑

∑

−+

+′−′=
′

σ

σλ

σσδστστ

2
targetvolume

neighbors
,

)(),(1))(()),((

VV

iiiiJH
ii
rr

rrrr

•Simulations are usually described using XML-based
CC3DML and Python.

•For simple simulations CC3DML is sufficient. For more
sophisticated ones you DO NEED Python.

•CompuCell3D distributions include many examples which
you may use as a starting point for your simulations.

• Twedit++-CC3D allows users to autogenerate complex
simulations within few seconds. We will use Twedit++-
CC3D throughout the workshop.

Describing CompuCell3D simulations

•Specify basic simulation properties such as lattice
dimension, cell membrane fluctuation amplitude , initial
conditions etc…

•List all cell types

•List chemical fields (if any)

•Choose cellular behaviors and constraints

Using Twedit++-CC3D to Autogenerate
Simulation Code Based on Top-Level

Specifications

Using Twedit++-CC3D part 1
•From CC3D Project menu select New Simulation Wizard…

•Type name of the simulation and choose languages which will describe –
default choice is fine

NOTICE: The simulation will
be stored in

C:\CC3DProjects\Cellsorting

Using Twedit++-CC3D part 2
•Specify lattice dimensions, cell motility, number of MCS, initial conditions,
lattice type, pixel copy distance

Using Twedit++-CC3D part 3
•List cell types

Using Twedit++-CC3D part 4
•Choose cell behaviors and constraints. For cell sorting simulation we
chose adhesive behaviors (implemented in the Contact module) and cell
volume constraint (implemented in VolumeFlex module)

Using Twedit++-CC3D part 5
•Go to the last Wizard screen and click Finish. The simulation code will be
generated. Now we have to manually edit parameters…

Using Twedit++-CC3D part 6
•Double click on project icon in the left panel to open simulation scripts. Go to
Cellsorting.xml to fine tune cellular behaviors.

Using Twedit++-CC3D part 7
•To run generated simulation – right-click on project icon and choose
“Open in Player”.

We define Simulation using a script written in
CompuCell3D Markup Language (CC3DML)

Cell

First: Define Lattice and Simulation Dynamics Parameters

< CompuCell3D>
<Potts>
<Dimensions x=“100" y=“100" z=“1"/>
<Steps>10000</Steps>
<Temperature>2</Temperature>

</Potts>

…

</CompuCell3D>

Cell Sorting - walk through the code

Cell
<Plugin Name="CellType">

<CellType TypeName="Medium" TypeId="0"/>
<CellType TypeName=“Light" TypeId="1"/>
<CellType TypeName=“Dark" TypeId="2"/>

</Plugin>

Note that Medium has TypeId =0. This is a
REQUIREMENT in CompuCell3D.

TypeIds must be consecutive integers.

Next, List all the Objects (here only cell types) in the
simulation

<Plugin Name="Volume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>1.0</LambdaVolume>
</Plugin>

<Plugin Name="Contact">
<Energy Type1="Medium" Type2="Medium">0
</Energy>
<Energy Type1="Light" Type2="Medium">16
</Energy>
<Energy Type1="Dark" Type2="Medium">16
</Energy>
<Energy Type1="Light" Type2="Light">16.0
</Energy>
<Energy Type1="Dark" Type2="Dark">2.0
</Energy>
<Energy Type1="Light" Type2="Dark">11.0
</Energy>

</Plugin>

Cell

Volume
volume
volumeEnergy(cell)

Contact
contactEnergy(
cell1, cell2)

List object properties, behaviors and interactions

Cell Sorting—The Simplest Model
Implement Choices as Simulation

<Plugin Name="Volume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>1.0</LambdaVolume>
</Plugin>

...)(... 2 +−+= VvE volumeλ

...)(... 2 +−+= τττλ VvE volume

<Plugin Name="Volume">
<VolumeEnergyParameters CellType="Light" LambdaVolume="2.0" TargetVolume="25"/>
<VolumeEnergyParameters CellType="Dark" LambdaVolume="2.0" TargetVolume="25"/>

</Plugin>

Mapping of CC3DML Syntax to Volume Constraint

Specifying Volume constraint for each cell type:

<Plugin Name=“Surface">
<TargetSurface>25</TargetSurface>
<LambdaSurface>1.0</LambdaSurface>
</Plugin>

...)(... 2 +−+= SsE surfaceλ

...)(... 2 +−+= τττλ SsE surface

<Plugin Name=“Surface">
<SurfaceEnergyParameters CellType="Light" LambdaSurface="2.0" TargetSurface="25"/>
<SurfaceEnergyParameters CellType="Dark" LambdaSurface="2.0" TargetSurface="25"/>

</Plugin>

Mapping of CC3DML Syntax to Surface Constraint

Specifying Surface constraint for each cell type:

<Plugin Name="Contact">
<Energy Type1="Medium" Type2="Medium">0
</Energy>
<Energy Type1="Light" Type2="Medium">16.0
</Energy>
<Energy Type1="Dark" Type2="Medium">16.0
</Energy>
<Energy Type1="Light" Type2="Light">16
</Energy>
<Energy Type1="Dark" Type2="Dark">2.0
</Energy>
<Energy Type1="Light" Type2="Dark">11.0
</Energy>

</Plugin>

...)1(...
',

)'(),())'(()),((+−+= ∑
xx

xxxxJE σσστστ δ

You must specify a Contact Energy between each pair of cell types.

Contact Energies can be negative

A smaller Contact Energy represents stronger adhesion

Mapping of CC3DML Syntax to Contact Energy Equation

Using built-in UniformInitializer Steppable:

<Steppable Type="UniformInitializer">
<Region>

<BoxMax x="80" y="80" z="1"/>
<BoxMin x="20" y="20" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Light,Dark</Types>

</Region>
</Steppable>

CompuCell3D provides a number of ways to create initial cell configurations .
UniformInitializer runs only once, at the beginning of a simulation and creates a
rectangular slab of the specified cell types (Light and Dark).

Define Initial Conditions (rectangular slab of cells)

x,y=(100,100)

x,y=(0,0)

<Steppable Type="UniformInitializer">
<Region>

<BoxMax x="80" y="80" z="1"/>
<BoxMin x="20" y="20" z="0"/>

<Gap>0</Gap>

<Width>5</Width>

<Types>Light,Dark</Types>
</Region>

</Steppable>

Define Initial Conditions (rectangular slab of cells) details:
Position of slab corners. Notice
that in 2D max position of z
coordinate has to be at 1 not
zero. This is because 2D lattice is
in fact 3D lattice with z dimension
set to 1!

Separation between Adjacent Cells in
Pixels (here 0)

Initial edge length of each square Cell

List of Cell Types to Include. If a Cell Type is repeated, the
fraction of that Cell Type is proportional to the number of times

it is listed

Using built-in cell field BlobInitializer Steppable:

<Steppable Type="BlobInitializer">
<Region>

<Radius>30</Radius>
<Center x="40" y="40" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Dark,Light</Types>

</Region>
</Steppable>

CompuCell3D provides a number of ways to create initial cell configurations .
BlobInitializer runs only once, at the beginning of a simulation and creates a rough
circle of the specified cell types.

NOTE: In the on-line code Dark cells are called Condensing and Light cells
NonCondensing

Define Initial Conditions (circular blob of cells)

Position of Center of Disk of Cells

<Steppable Type="BlobInitializer">
<Region>

<Radius>30</Radius>
<Center x="40" y="40" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Dark, Light</Types>

</Region>
</Steppable>

Radius of Disk of Cells

Separation between Adjacent Cells in
Pixels (here 0)

Initial edge length of each square Cell

List of Cell Types to Include. If a Cell Type is repeated, the
fraction of that Cell Type is proportional to the number of times

it is listed

Define Initial Conditions (circular blob of cells) details:

<CompuCell3D>
<Potts>
<Dimensions x="100" y="100" z="1"/>
<Steps>10</Steps>
<Temperature>10</Temperature>
<NeighborOrder>2</NeighborOrder>

</Potts>

<Plugin Name="CellType">
<CellType TypeName="Medium" TypeId="0"/>
<CellType TypeName=“Light" TypeId="1"/>
<CellType TypeName=“Dark" ="2"/>

</Plugin>

<!– Replaced by-type constraint with global one -->
<Plugin Name="Volume">
<TargetVolume>25</TargetVolume>
<LambdaVolume>1.0</LambdaVolume>

</Plugin>

<Plugin Name="Contact">
<Energy Type1="Medium" Type2="Medium">0
</Energy>
<Energy Type1="Light" Type2="Medium">16
</Energy>
<Energy Type1="Dark" Type2="Medium">16
</Energy>
<Energy Type1="Light" Type2="Light">16
</Energy>
<Energy Type1="Dark" Type2="Dark">2.0
</Energy>
<Energy Type1="Light" Type2="Dark">11
</Energy>

</Plugin>

<Steppable Type="UniformInitializer">
<Region>

<BoxMin x="20" y="20" z="0"/>
<BoxMax x="80" y="80" z="1"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Light,Dark</Types>

</Region>
</Steppable>

</CompuCell3D>

The same simulation in C/C++/Java/Fortran would take at least 1000 lines
of code…

Putting It All Together - cellsort_2D.xml

Steering bar allows users to start or pause the
simulation, zoom in , zoom out, to switch between
2D and 3D visualization, change view modes (cell
field, pressure field , chemical concentration field,
velocity field etc..)

Player can output multiple
views during single
simulation run – Add
Screenshot function

Information bar

Running Cell Sorting Simulation in CompuCell Player

Go to File->Open Simulation File and navigate to C:/CC3DProjects/Cellsorting directory.
From this directory choose Cellsorting.cc3d project file.

Opening cell sorting simulation in CompuCell Player

Most of Player’s configuration options are accessible through Tools-
>Configuration… and Visualization menus.

Configuring the Player

Visualization Menu allows you to choose whether in 2D cell borders should be
displayed or not (in 3D borders are not drawn at all). You can also select to
draw isocontour lines for the concentration plots and turn on and off displaying
of the information about minimum and maximum concentration.

Screen update frequency is a parameter that defines how often (in units of MCS)
Player screen should be updated. Note, if you choose to update screen too often
(say every MCS) you will notice simulation speed degradation because it does take
some time to draw on the screen. You may also choose not to output any files by
checking “Do not output results” check-box. Additionally you have the option to
output simulation data in the VTK format for later replay.

Screenshot frequency determines how often screenshots of the lattice views will be
taken (currently Player outputs *.png files) .

Screenshots are taken every “Screenshot Frequency” MCS

By default Player will store screenshots of the currently displayed lattice view.

In addition to this users can choose to store additional screenshots at the same time.
Simply switch to different lattice view, click camera button. Those additional
screenshots will be taken irrespectively of what Player currently displays.

Once you selected additional screenshots it is convenient to save screenshot
description file (it is written automatically by the Player, user just provide file name).
Next time you decide to run CompuCell3D you may just use command

compucell3d.sh -s screenshotDesctiptionFile_cellsort.txt -i cellsort_2D.xml

This will run simulation where stored screenshots will be taken

Screenshots

Click camera button
on select lattice views Notice, you may change

plot types as well

When you picked lattice views,
you may save screenshot
description file for later reuse

Click here to change
color for cell type 1

Enter cell type number
here

Click here to change
cell border color

Click here to change
isocontour color

To enter new cell type
click “Add Cell Type”
button

Configuring cell type colors

Sometimes when you open up the simulation and switch to 3D view you may find that your
simulation looks like solid a parallelepiped. This might be due to a box made out of frozen
cells that hides inside other cells. In this case you need to make the box invisible.
Type cell type number that you want to be invisible in 3D in this box. Notice, by
default Player will not display Medium (type 0). Here we also make types 4 and 5
invisible

Configuring cell types invisible in 3D visualizations

CompuCell3D Player will allow you to change most of the parameters of the XML file
while the simulation is running.

Use steering panel to change simulation
parameters. Make sure you pause
simulation before doing this

Target volume = 100
Screenshot was taken before simulation had
time to equilibrate

Target volume = 25

Steering the simulation

Exploring how different parameters affect cellular behaviors
in cell sorting simulation

1. Vary cell membrane fluctuation amplitude (aka temperature)
2. Vary LambdaVolume, TargetVolume
3. Vary Contact Energy coefficients

Please refer to the Quick start guide to find set of exercises which will help you better
understand the roles played by all parameters

Basic facts:

•Cells that have high contact energies between themselves, when they come together
they increase overall energy of the system. Such cells tend to stay away from each
other.

•Cells that have low contact energies between themselves, when they come together
they decrease overall energy of the system. Such cells tend to cluster together.

•Those two rules are helpful when determining contact energy hierarchy. Simply cells of
one type like to be surrounded by those cells with which the contact energy is the
lowest.

•And vice versa, if you want to make two cells not to touch each other, make sure that
contact energy between them is high.

Practical way of guessing contact energy hierarchy

Cell sorting simulation where cells of both
type like to be surrounded by medium. That
is contact energy between Condensing and
Medium as well as between
NonCondensing and Medium is very low

JCM =JNM <JNN <JCC <JNC

Examples of different contact energy hierarchies

Cell sorting simulation where cells of both
type do not like to be surrounded by
medium and cells of homotypic cells do not
like each other

JNC <<JNN =JCC <JCM =JNM

Examples of different contact energy hierarchies

CompuCell3D Subtleties
Now that we’ve seen and run a simulation, we can go back and review some general

points:

1. Understanding XML

2. Running CC3D from command line (useful for running CC3D on clusters)

3. Replacing XML with corresponding Python syntax

CC3DML is an XML, which stands for eXtensible Markup Language. A standard
way to exchange information between different applications.

XML Example:

<Sentence>

<Text>It is too early to be in class</Text>

<FontType>TimesNewRoman</FontType>

<FontSize>12</FontSize>

<DisplayHint Hint=“AddFrameAround”/>

</Sentence>

Generic XML 101

<Computer>

<CPU>Pentium

<Frequency Unit=“GHz”>2.4</Frequency>
</CPU>

<Memory>DDR-3

<Frequency Unit=“MHz”>800</Frequency>
</Memory>
…
</Computer>

Computer

CPU

Frequency

Unit=“GHz”

Memory

Frequency

Unit=“MHz”

Pentium

2.4

800

DDR-3

XML is essentially a definition of hierarchical (tree-like) data structure

1. The CC3DML must specify the simulation in the following order:

• Potts

• Plugins

• Steppables

If you mix, e.g. Plugins with Steppables you will get an error.
2. Remember to match every xml tag with a closing tag

<Plugin>

…

</Plugin>

3. Watch for typos – an error in the CC3DML syntax will generate an error pointing to
the offending line

4. Modify/reuse examples when possible, rather than starting from scratch – saves a
lot of time

Putting It All Together - Avoiding Common Errors in CC3DML code

You can start a simulation with or without CompuCell Player from the command line.

Open a console (terminal) and type:

./compucell3d.command –i cellsort_2D.xml (on OSX)

./compucell3d.sh –i cellsort_2D.xml (on Linux)

compucell3d.bat –i cellsort_2D.xml (on Windows) – or simply double click the CC3D
Desktop icon

Running CompuCell3D from the command line is required if you want to run in batch
mode on a cluster. For more information about command line options see the
“Running CompuCell3D” manual at www.compucell3d.org.

Running a Simulation From the Command Line

http://www.compucell3d.org/

1000 MCS 1000 MCS

The simulation parameters were kept the same for the two runs

Cell-sorting simulation on square and hexagonal lattices

Replacing CC3DML with
Python

def configureSimulation(sim):

Snt=ElementCC3D(“Sentence”)

Txt=Snt.ElementCC3D(“Text”,{}

,”It is too early”)

Fnt=Snt.ElementCC3D(“FontType”,{},

”TimesNewR”)

fntSize=Snt.ElementCC3D(“FontSize”,

{},12)

Disp=Snt.ElementCC3D(“DisplayHint”,
{“Hint”:”AddFrameAround”})

Generic XML Example: Parallel Python Example

<Sentence>

<Text>It is too early to be in class</Text>

<FontType>TimesNewRoman</FontType>

<FontSize>12</FontSize>

<DisplayHint Hint=“AddFrameAround”/>

</Sentence>

CC3D Supports Python Syntax Parallel to CC3DML Syntax

Since developing CompuCell3D simulation requires typing some simple code it is
important that you have the right tools to do that most effectively.

THE BEST EDITOR IS TWEDIT (supported by Consumer Research tests)

•On Windows systems we also recommend Notepad++ editor:

http://notepad-plus.sourceforge.net/uk/site.htm

•On Linux you have lots of choices: Kate (my favorite), gedit, mcedit etc.

•On OSX situation you may use Smultron

http://sourceforge.net/projects/smultron/

or TextWrangler

http://www.barebones.com/products/textwrangler/

And as usual, if nothing else works there is always vi, emacs and punch-cards

Choosing the Right Text Editor

http://notepad-plus.sourceforge.net/uk/site.htm
http://sourceforge.net/projects/smultron/
http://www.barebones.com/products/textwrangler/

Go to Settings->Preferences…

Configuring Notepad++ for use with Python

On the “Edit Components” tab change Tab Settings to :

Tab size: 4

Replace by space: “checked” Click on the number
to change it

Go to Settings->Configure Kate …

Configuring Kate for use with Python

Click Editing and in the “General” Tab in “Tabulators” section set:

Insert spaces instead of tabulators: “checked”

Tab width: “4 characters”

On “Indentation” tab in “Indentation Properties” section set:

Indentation width: 4 characters

•Starting with 3.2.0 versions you may get rid of XML file and use Python to describe
entire simulation.

•The advantage of doing so is that you have one less file to worry about but also you
may more easily manipulate simulation parameters. For example if you want contact
energy between two cell types be twice as big as between two other cell types you
could easily implement it in Python. Doing the same exercise with CC3DML is a bit
harder (but not impossible).

•Python syntax used to describe simulation closely mimics CC3DML syntax. There are
however certain differences and inconsistencies caused by the fact that we are using
different languages to accomplish same task. Currently there is no documentation
explaining in detail Python syntax that replaces CC3DML. It will be developed soon

•The most important reason for defining entire simulation in Python is the possibility of
simulation steering i.e. the ability to dynamically change simulation parameters while
simulation is running (available in 3.2.1)

• The way you replace XML in Python is purely mechanical and we will show it on a
simple example

Using Python to describe entire simulations

<Computer>

<CPU>Pentium

<Frequency Unit=“GHz”>2.4</Frequency>
</CPU>

<Memory>DDR-3

<Frequency Unit=“MHz”>800</Frequency>
</Memory>
…
</Computer>

Computer

CPU

Frequency

Unit=“GHz”

Memory

Frequency

Unit=“MHz”

Pentium

2.4

800

XML is essentially a definition of hierarchical (tree-like) data structure

root=createElement(…parameters…)

child1=root.createElement(…parameters…)

child1_of_child1=child1.createElement(…parameters…)

child2=root.createElement(…parameters…)

child1_of_child2=child2.createElement(…parameters…)

Building tree-like structure in a computer language (e.g. Python)

<CompuCell3D>
<Potts>

<Dimensions x="100" y="100" z="1"/>
<Anneal>10</Anneal>
<Steps>10000</Steps>
<Temperature>10</Temperature>
<NeighborOrder>2</NeighborOrder>

</Potts>
</CompuCell3D>

import CompuCellSetup

from XMLUtils import ElementCC3D

cc3d=ElementCC3D("CompuCell3D")
potts=cc3d.ElementCC3D("Potts")
potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})

potts.ElementCC3D(“Anneal”,{},10)

potts.ElementCC3D("Steps",{},1000)
potts.ElementCC3D("Temperature",{},10)
potts.ElementCC3D("NeighborOrder",{},2)

Notice , by using Python we have even saved few lines

Replacing XML with Python syntax:

Rules:

•To open XML document, create parent ElementCC3D:

cc3d=ElementCC3D("CompuCell3D")

•For nesting XML elements inside another XML element use the following:

potts=cc3d.ElementCC3D("Potts")

•If the element has attribute use Python dictionary syntax to list the attributes:

potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})

•If the XML element has value but no attributes use the following:

potts.ElementCC3D("NeighborOrder",{},2)

•If the XML element has both value and attributes combine two previous examples

potts.ElementCC3D("NeighborOrder",{“LatticeType”:”Hexagonal”},2)*

*for illustration purposes only

import sys
from os import environ
import string
sys.path.append(environ["PYTHON_MODULE_PATH"])

import CompuCellSetup

sim,simthread = CompuCellSetup.getCoreSimulationObjects()

configureSimulation(sim)

CompuCellSetup.initializeSimulationObjects(sim,simthread)

from PySteppables import SteppableRegistry
steppableRegistry=SteppableRegistry()

CompuCellSetup.mainLoop(sim,simthread,steppableRegistry)

Python-based simulation – template script

But you need to implement configureSimulation function:

Python
def configureSimulation(sim):

import CompuCellSetup

from XMLUtils import ElementCC3D

cc3d=ElementCC3D("CompuCell3D")

potts=cc3d.ElementCC3D("Potts")

potts.ElementCC3D("Dimensions",{"x":100,"y":100,"z":1})

potts.ElementCC3D("Steps",{},1000)

potts.ElementCC3D("Temperature",{},10)

potts.ElementCC3D("NeighborOrder",{},2)

cellType=cc3d.ElementCC3D("Plugin",{"Name":"CellType"})

cellType.ElementCC3D("CellType", {"TypeName":"Medium", "TypeId":"0"})

cellType.ElementCC3D("CellType", {"TypeName":"Condensing", "TypeId":"1"})

cellType.ElementCC3D("CellType", {"TypeName":"NonCondensing", "TypeId":"2"})

volume=cc3d.ElementCC3D("Plugin",{"Name":"Volume"})

volume.ElementCC3D("TargetVolume",{},25)

volume.ElementCC3D("LambdaVolume",{},2.0)

contact=cc3d.ElementCC3D("Plugin",{"Name":"Contact"})

contact.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)

contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},16)

contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Condensing"},2)

contact.ElementCC3D("Energy",{"Type1":"NonCondensing", "Type2":"Condensing"},11)

contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Medium"},16)

contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Medium"},16)

blobInitializer=cc3d.ElementCC3D("Steppable",{"Type":"BlobInitializer"})

blobInitializer.ElementCC3D("Gap",{},0) blobInitializer.ElementCC3D("Width",{},5)

blobInitializer.ElementCC3D("CellSortInit",{},"yes")

blobInitializer.ElementCC3D("Radius",{},40)

next line is very important and very easy to forget about. It registers XML description and points

CC3D to the right XML file (or XML tree data structure in this case)

CompuCellSetup.setSimulationXMLDescription(cc3d)

Continued…

Full example:

Demos/PythonOnlySimulationsExamples/cellsort-2D-player-new-syntax.py

Example: Scaling contact energies – advantage of using Python to configure entire
simulation

energyScale=10

def configureSimulation(sim):
global energyScale

.

.
contact=cc3d.ElementCC3D("Plugin",{"Name":"Contact"})

contact.ElementCC3D("Energy", {"Type1":"Medium", "Type2":"Medium"},0)

contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"NonCondensing"},1.6*energyscale)

contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Condensing"},0.2*energyscale)

contact.ElementCC3D("Energy",{"Type1":"NonCondensing", "Type2":"Condensing"},1.1*energyscale)

contact.ElementCC3D("Energy", {"Type1":"NonCondensing", "Type2":"Medium"},1.6*energyscale)

contact.ElementCC3D("Energy", {"Type1":"Condensing", "Type2":"Medium"},1.6*energyscale)

It would be a bit awkward (but not impossible) to have same functionality in CC3DML…

Major Plugins and Steppables
Available in CompuCell3D

•Current version of CompuCell3D allows users to run simulations on square and
hexagonal lattices.

•Other regular geometries (e.g. triangular) can be implemented fairly easily

•Some plugins work on square lattice only - e.g. local connectivity plugin

•Switching to hexagonal lattice requires only one line of code
in the Potts section

<LatticeType>Hexagonal</LatticeType>

•Model parameters may need to be adjusted when going from one type lattice to
another. This is clearly an inconvenience but we will try to provide a solution in the
future

• Different lattices have varying degrees of lattice anisotropy. In many cases using
lower anisotropy lattice is desired (e.g. foam coarsening simulation on hexagonal
lattice). It is also important to check results of your simulation on different kind of
lattices to make sure you don’t have any lattice-specific effects.

•Compucell3D makes such comparisons particularly easy

Using different kind of lattices with CompuCell3D

1

1

1

1

2

22

2

3

3

3

3

4

4

4

4 4

4

4

4 1
1

1
1

1

1

2 2

2

22

2

3

3

3

3

3

3

4

4

4
44

4

4

4

4
4 4

4

2D Square Lattice 2D Hexagonal Lattice

Neighbo
r Order

Number of
Neighbors

Euclidian
Distance

Number of
Neighbors

Euclidian
Distance

1 4 1 6

2 4 6

3 4 2 6

4 8 12

3/2

2 3/6

3/8

14 / 35

SquareLattice:

Square in 2D

Cube in 3D

Hexagonal lattice:

Hexagon in 2D

Rhombic dodecahedron in 3D

Nearest neighbors in 2D and their Euclidian distances from the central pixel

CompuCell3D cells have a default set of attributes:

Volume, surface, center of mass position, cell id etc…

Additional attributes are added during runtime:

List of cells neighbors, polarization vector, Python dictionary or Python list etc…

To keep parameters up-to-date users need to declare appropriate plugins in the
CC3DML configuration file.

For example, to make sure surface of cell is up-to-date users need to make sure that
SurfaceTracker plugin is registered:

Include :

<Plugin Name=“SurfaceTracker”/>

Cell Attributes

or use Surface plugin which will implicitly call SurfaceTracker

<Plugin Name=“Surface”>

<LambdaSurface>0.0</LambdaSurface>

<TargetSurface>25.0</TargetSurface>

</Plugin>

But here surface tracking costs you extra calculation of surface energy term:

E=…+λ(s-ST)2 +…

<Plugin Name="VolumeFlex">
<VolumeEnergyParameters CellType=“Amoeba" TargetVolume=“150" LambdaVolume="10"/>
<VolumeEnergyParameters CellType=“Bacteria" TargetVolume=“10" LambdaVolume=“50"/>

</Plugin>

<Plugin Name=“SurfaceFlex">
<SurfaceEnergyParameters CellType=“Amoeba" TargetSurface=“60" LambdaSurface="10"/>
<SurfaceEnergyParameters CellType=“Bacteria" TargetSurface=“12" LambdaSurface=“20"/>

</Plugin>

You may specify different volume and surface constraints for different cell types. This
can be done entirely at the XML level.

2)(τττλ VvE V −=

2)(τττλ SsE S −=

Type dependent quantities

More Flexible Specification of Surface and Volume Constraints

<Plugin Name="VolumeLocalFlex“/>

<Plugin Name=“SurfaceLocalFlex“/>

2)(σσσλ VvE V −=

2)(σσσλ SsE S −=

Notice that all the parameters are local to a cell. Each cell might have different target
volume (target surface) and different λ

volume (surface). You will need to use Python to
initialize or manipulate those parameters while simulation is running. There is currently
no way to do it from XML level. I am not sure it would be practical either.

Even More Flexible Specification of Surface and Volume Constraints

Sometimes in your simulation you need to have access to a current list of cell neighbor.
CompuCell3D makes this task easy:

<Plugin Name=“NeighborTracker“/>

Inserting this statement in the plugins section of the XML will ensure that at any given
time the list of cell neighbors will be accessible to the user. You can access such a list
either using C++ or Python. In addition to storing neighbor list , a common surface area
of a cell with its neighbors is stored.

Tracking Cell Neighbors

Including

<Plugin Name=“CenterOfMass“/>

statement in your XML code (remember to put it in the correct place) will enable cell
centroid tracking:

∑
−

=
pixeli

iCM
C xx ∑

−

=
pixeli

iCM yy ∑
−

=
pixeli

iCM
C zz

To get a center of mass of cell you will need to divide centroids by the cell volume:

V
xx CM

C

CM =
V

yy CM
C

CM =
V

zz CM
C

CM =

Tracking Center of Mass of Each Cell

or use simpler syntax in Python

xCM=cell.xCOM

yCM=cell.yCOM

zCM=cell.zCOM

You may initialize simple geometries of cell clusters directly from XML

<Steppable Type=“UniformInitializer">
<Region>

<BoxMin x=“10” y=“10” z=“0”/>
<BoxMax x=“90” y=“90” z=“1”/>

<Types>Condensing,NonCondensing</Types>

<Gap>0</Gap>
<Width>5</Width>

</Region>

</Steppable>
Specify box size and position

Specify cell types – here the box will be filled
with cells whose types are randomly chosen
(either 1 or 2)

Choose cell size and space between cells

XML initializers - UniformInitializer

<Steppable Type=“UniformInitializer">
<Region>

<BoxMin x=“10” y=“10” z=“0”/>
<BoxMax x=“90” y=“90” z=“1”/>

<Types>Condensing</Types>

<Gap>0</Gap>
<Width>5</Width>

</Region>
</Steppable>

Notice, we have only specified one type (Condensing) thus all the cells are of the same
type

<Steppable Type=“UniformInitializer">
<Region>

<BoxMin x=“10” y=“10” z=“0”/>
<BoxMax x=“90” y=“90” z=“1”/>

<Types>Condensing,NonCondensing</Types>

<Gap>2</Gap>
<Width>5</Width>

</Region>
</Steppable>

Introducing a gap between cells

<Steppable Type="UniformInitializer">
<Region>

<BoxMin x="10" y="10" z="0"/>
<BoxMax x="40" y="40" z="1"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Condensing,NonCondensing</Types>

</Region>
<Region>

<BoxMin x="50" y="50" z="0"/>
<BoxMax x="80" y="80" z="1"/>
<Gap>0</Gap>
<Width>3</Width>
<Types>Condensing</Types>

</Region>
</Steppable>

Notice, we have defined two regions with different cell sizes and different types

<Steppable Type="BlobInitializer">
<Region>

<Radius>30</Radius>
<Center x="40" y="40" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>Condensing,NonCondensing</Types>

</Region>

<Region>
<Radius>20</Radius>
<Center x="80" y="80" z="0"/>
<Gap>0</Gap>
<Width>3</Width>
<Types>Condensing</Types>

</Region>
</Steppable>

Defining two regions with different cell sizes and different types for BlobInitializer is
very similar to the same task with UniformInitilizer. There are some new XML tags
which differ the two initializers.

XML initializers - BlobInitializer

When using BlobInitializer of UniformInitializer you may list same type many times:
<Types>Condensing,NonCondensing,NonCondensing,NonCondensing</Types>

The number of cells of a given type will be proportional to the number of times a given
type is listed inside the <Types> tag.

In the above example the 3/4 of cells will be NonCondensing and 1/4 will be
Condensing

<Steppable Type="BlobInitializer">
<Region>
<Radius>40</Radius>
<Center x="50" y="50" z="0"/>
<Gap>0</Gap>
<Width>5</Width>
<Types>

Condensing,
NonCondensing,
NonCondensing,
NonCondensing

</Types>
</Region>

</Steppable>

Population control using initializers

Use PIFInitializer to create sophisticated initial conditions. PIF file allows you to
compose cells from single pixels or from larger rectangular blocks

The syntax of the PIF file is given below:

Cell_id Cell_type x_low x_high y_low y_high z_low z_high

Example (file: amoebae_2D_workshop.pif):

0 amoeba 10 15 10 15 0 0

This will create rectangular cell with x-coordinates ranging from 10 to 15
(inclusive), y coordinates ranging from 10 to 15 (inclusive) and z coordinates
ranging from 0 to 0 inclusive.

<Steppable Type="PIFInitializer">
<PIFName>amoebae_2D_workshop.pif</PIFName>

</Steppable>

0,0

Using PIFInitilizer

Let’s add another cell:

Example (file: amoebae_2D_workshop.pif):

0 Amoeba 10 15 10 15 0 0
1 Bacteria 35 40 35 40 0 0

Notice that new cell has different cell_id (1) and different type (Bacterium)

Let’s add pixels and blocks to the two cells
from previous example:

Example (file: amoebae_2D_workshop.pif):

0 Amoeba 10 15 10 15 0 0
1 Bacteria 35 40 35 40 0 0
0 Amoeba 16 16 15 15 0 0
1 Bacteria 35 37 41 45 0 0

To add pixels, start new pif line with existing cell_id (0 or 1 here) and specify pixels.

This is what happens when you do not reuse
cell_id

Example (file: amoebae_2D_workshop.pif):

0 Amoeba 10 15 10 15 0 0
1 Bacteria 35 40 35 40 0 0
0 Amoeba 16 16 15 15 0 0
2 Bacteria 35 37 41 45 0 0

Introducing new cell_id (2) creates new cell.

PIF files allow users to specify arbitrarily complex cell shapes and cell arrangements.
The drawback is, that typing PIF file is quite tedious task and , not recommended.
Typically PIF files are created using scripts.

In the future release of CompuCell3D users will be able to draw on the screen cells or
regions filled with cells using GUI tools. Such graphical initialization tools will greatly
simplify the process of setting up new simulations. This project has high priority on our
TO DO list.

PIFDumper is typically used to output cell lattice every predefined number of MCS. It is
useful because, you may start with rectangular cells, “round them up” by running
CompuCell3D , output cell lattice using PIF dumper and reload newly created PIF file
using PIFInitializer.

<Steppable Type="PIFDumper“ Frequency=“100”>
<PIFName>amoebae</PIFName>

</Steppable>

Above syntax tells CompuCell3D to store cell lattice as a PIF file every 100 MCS.

The files will be named amoebae.100.pif , amoebae.200.pif etc…

<Steppable Type="PIFInitializer">
<PIFName>amoebae.100.pif</PIFName>

</Steppable>

To reload file , say amoebae.100.pif use already familiar syntax:

PIFDumper - yet another way to create initial condition

See presentation by Mitja Hmeljak

PIFTracer and other PIF Generators

Basic facts

•Chemotaxis is defined as cell motion induced by a presence (gradient) of a chemical.

•In GGH formalism chemotaxis is implemented as a spin copy bias which depends on
chemical gradient.

•Chemotaxis was first introduced to GGH formalism by Paulien Hogeweg from University
of Utrecht, Netherlands

•In CompuCell3D Chemotaxis plugin provides wide range of options to support different
modes of chemotaxis.

•Chemotaxis plugin requires the presence of at least one concentration field. The fields
can be inserted into CompuCell3D simulation by means PDE solvers or can be created,
initialized and managed explicitly from the Python level

Chemotaxis

))()((sourcendestinatiochem xcxcE −−=Δ λ

If concentration at the spin-copy destination pixel (c(xdestination)) is higher than
concentration at the spin-copy source (c(xsource)) AND λ

is positive then ΔE is negative
and such spin copy will be accepted. The cell chemotacts up the concentration gradient

x

C(x)

Lower concentration
Higher concentration

Chemorepulsion can be obtained by making λ

negative

Chemotaxis Term – Most Basic Form

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

−=Δ
)(

)(
)(

)(

source

source

ndestinatio

ndestinatio
chem xca

xc
xca

xcE λ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

−
+⋅

−=Δ
1)(

)(
1)(

)(

source

source

ndestinatio

ndestinatio
chem xca

xc
xca
xcE λ

Alternative Formulas For Chemotaxis Energy

<Plugin Name="Chemotaxis">
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">

<ChemotaxisByType Type="Amoeba" Lambda="300"/>
<ChemotaxisByType Type="Bacteria" Lambda="200"/>

</ChemicalField>
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">

<ChemotaxisByType Type="Amoeba" Lambda=“-300"/>
</ChemicalField>
</Plugin>

))()((sourcendestinatiochem xcxcE −−=Δ λ

Notice , that different cell types may have different chemotactic properties. For more
than 1 chemical fields the change of chemotaxis energy expression is given below:

∑
−

−−=Δ
fieldi

sourceindestinatioiichem xcxcE))()((λ

Chemotaxis - XML Examples

<Plugin Name="Chemotaxis">
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">

<ChemotaxisByType Type="Amoeba" Lambda="300"/>
<ChemotaxisByType Type="Bacteria" Lambda="200"/>

</ChemicalField>
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">

<ChemotaxisByType Type="Amoeba" Lambda=“-300“ SaturationCoef=“2.0”/>
</ChemicalField>
</Plugin>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

−=Δ
)(

)(
)(

)(

source

source

ndestinatio

ndestinatio
chem xca

xc
xca

xcE λ

Chemotaxis - XML Examples continued

<Plugin Name="Chemotaxis">
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF">

<ChemotaxisByType Type="Amoeba" Lambda="300"/>
<ChemotaxisByType Type="Bacteria" Lambda="200"/>

</ChemicalField>
<ChemicalField Source="FlexibleDiffusionSolverFE" Name="FGF4">

<ChemotaxisByType Type="Amoeba" Lambda=“-300“ SaturationLinearCoef=“2.0”/>
</ChemicalField>
</Plugin>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

−
+⋅

−=Δ
1)(

)(
1)(

)(

source

source

ndestinatio

ndestinatio
chem xca

xc
xca
xcE λ

))()((sourcendestinatiochem xcxcE −−=Δ λ

Chemotaxis - XML Examples continued

•CompuCell3D has built-in diffusion , reaction diffusion and advection diffusion PDE
solvers. Those are, probably most frequently used solver in GGH modeling.

•CompuCell3D uses explicit (unstable but fast) method to solve the PDE. Constantly
changing boundary conditions practically rule out more robust, but slow implicit solvers.

•Because of instability users should make sure that their PDE parameters do not
produce wrong results (which could manifest themselves as “rough” concentration
profiles, “insane” concentration values, NaN’s - Not A Number etc…). Future release of
CompuCell3D will provide tools to detect potential PDE instabilities.

•Additional solvers can be implemented directly in C++ or using BioLogo. BioLogo is
especially attractive because it takes as an input human readable PDE description and
generates fast C++ code.

•Typically a concentration from the PDE solver is read by other CompuCell3D modules
to adjust cell properties. Currently the best way of dealing with this is through Python
interface.

PDE Solvers

Flexible Diffusion Solver

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>

</DiffusionData>
</DiffusionField>

</Steppable>

Define diffusion field

Read-in initial condition

Initial Condition File Format:

x y z concentration

Example:

27 27 0 2000.0

45 45 0 0.0 …

Define diffusion parameters

Two-pulse initial condition

Initial condition (diffusion_2D.pulse.txt):

5 5 0 1000.0
27 27 0 2000.0

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<DoNotDiffuseTo>Medium</DoNotDiffuseTo>
<ConcentrationFileName>diffusion_2D.pulse.txt</ConcentrationFileName>

</DiffusionData>
</DiffusionField>

</Steppable>

You may specify diffusion regions

FGF will diffuse inside big cell and will not go to Medium

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<DoNotDiffuseTo>Wall</DoNotDiffuseTo>
<ConcentrationFileName>diffusion_2D_wall.pulse.txt</ConcentrationFileName>

</DiffusionData>
</DiffusionField>

</Steppable>

FGF will not diffuse to the Wall

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.010</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>
<!--DoNotDiffuseTo>Wall</DoNotDiffuseTo-->
<ConcentrationFileName>diffusion_2D_wall.pulse.txt</ConcentrationFileName>

</DiffusionData>
</DiffusionField>

</Steppable>

Now FGF diffuses everywhere

PDE Solver Caller Plugin

By default PDE solver is called once per MCS. You may call it more often, say 3 times
per MCS by including PDESolverCaller plugin:

<Plugin Name="PDESolverCaller">
<CallPDE PDESolverName="FlexibleDiffusionSolverFE" ExtraTimesPerMC=“2"/>

</Plugin>

Notice, that you may include multiple CallPDE tags to call different PDESolvers with
different frequencies.

You typically use this plugin to avoid numerical instabilities when working with large
diffusion constants

Secretion

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>

</DiffusionData>
<SecretionData>

<Secretion Type="Amoeba">20</Secretion>
</SecretionData>

</DiffusionField>
</Steppable>

We turned diffusion off and have cells of type
Amoba secrete FGF. Secretion takes place at every
pixel belonging to Amoeba cells. At each MCS we
increase the value of the concentration at those
pixels by 20 units.

CompuCell3D offers several modes for including secretion in your simulations. Let’s look
at concrete examples:`

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>

</DiffusionData>
<SecretionData>

<SecretionOnContact Type=“Amoeba" SecreteOnContactWith=“Medium">20.1</SecretionOnContact>
</SecretionData>
</DiffusionField>

</Steppable>

Secretion will take place in those pixels
belonging to Amoeba cells that have contact
with Medium

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>

</DiffusionData>
<SecretionData>
<SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">20.1</SecretionOnContact>

</SecretionData>
</DiffusionField>

</Steppable>

Secretion will take place in those pixels
belonging to Medium cells that have contact
with Amoeba

<Steppable Type="FlexibleDiffusionSolverFE">
<DiffusionField>

<DiffusionData>
<FieldName>FGF</FieldName>
<DiffusionConstant>0.000</DiffusionConstant>
<DecayConstant>0.000</DecayConstant>

</DiffusionData>
<SecretionData>
<SecretionOnContact Type="Medium" SecreteOnContactWith="Amoeba">20.1</SecretionOnContact>
<SecretionOnContact Type="Bacteria“ SecreteOnContactWith="Bacteria">10.1</SecretionOnContact>
<SecretionOnContact Type="Bacteria" SecreteOnContactWith="Medium">5.1</SecretionOnContact>

</SecretionData>
</DiffusionField>

</Steppable>

1.Secretion will take place in those pixels
belonging to Medium cells that have contact
with Amoeba.

2.There will be secretion in pixels of Bacteria
cells that have contact with medium.

3.Secretion will also take place in those pixels
of bacteria cells that have contact with other
bacteria cells

Reaction-Diffusion set of PDE’s

()

()

()

21
1 1 1 1 2

22
2 2 2 1 2

2
1 2

, , ,

, , ,

, , ,

N

N

N
N N N N

c = D c f c c c
t

c = D c f c c c
t

c = D c f c c c
t

∂
∇ +

∂
∂

∇ +
∂

∂
∇ +

∂

K

K

M

K

Solving general set of above PDE’s can be tricky because functions ‘f’ can have
arbitrary form. There are two ways to deal with this problem:

1. For each set of PDE’s write new PDE solver. This is not a bad idea if you can do
it “on the fly”. If you can write a code that automatically generates and compiles
PDE solver you will see no performance degradation

2. Use fast math expression parser that will interpret mathematical expressions
during run time

CompuCell3D 3.4.1 uses the second solution. The reason was that it was the
simplest to implement and also one does not have to bother about compilers
installed on users machines. However such PDE solver will not be as fast as the
compiled one

2 3

2

0.01 /3+0.3-

0.01 0.08 0.064 0.056

F = F F F H
t
H = H F H
t

∂
∇ + −

∂
∂

∇ + − +
∂

Let’s consider a simple example

<Steppable Type="ReactionDiffusionSolverFE">

<DiffusionField>

<DiffusionData>

<FieldName>F</FieldName>

<DiffusionConstant>0.01</DiffusionConstant>

<ConcentrationFileName>Demos/diffusion/FN.pulse.txt</ConcentrationFileName>

<AdditionalTerm>F-F*F*F/3+0.3-H</AdditionalTerm>

</DiffusionData>

</DiffusionField>

<DiffusionField>

<DiffusionData>

<FieldName>H</FieldName>

<DiffusionConstant>0.01</DiffusionConstant>

<AdditionalTerm>0.08*F-0.064*H+0.056</AdditionalTerm>

</DiffusionData>

</DiffusionField>

</Steppable>

Functions of F and H are coded using quite naturally looking syntax. The output of the
above simulation with periodic boundary conditions may looks like

It is quite interesting that the slowdown due to interpreting user defined functions is
very small.

Imposing Directed Motion of Cells

One can impose artificial spin flip bias that would have an effect of moving cell in the
direction OPPOSITE to Lambda vector specified below. The magnitude of the lambda
vector determines the “amount” of spin copy bias.

<Plugin Name="ExternalPotential">
<Lambda x="-0.5" y="0.0" z="0.0"/>

</Plugin>

)(_ sourcendestinatiopotentialexternal xxE −⋅−=Δ λ

λΔE will be negative (favoring spin copy)

Connectivity plugin ensures that 2D cells are not fragmented and are simply
connected. It decreases probability of certain spin flips which are can break
connectedness of a cell. Users can specify energy penalty that will be incured if the
spin copy is to break connectedness of the cell.:

Syntax:

<Plugin Name=“Connectivity”>

<Penalty>100000</Penalty>

</Plugin>

Note: this plugin will not work properly with hexagonal lattice

Connectivity Plugin

Cell sorting simulation with and without connectivity plugin

Length constraint plugin is used to force cells to keep preferred length along cell’s
longest axis (we assume that cells have elliptical shape):

<Plugin Name=“LengthConstraint”>

<LengthEnergyParameters TargetLength=“15” LambdaLength=“2.0”/>

</Plugin>

The LambdaLength and TargetLength play similar role to LambdaVolume and
TargetVolume from Volume Plugin.

IMPORTANT: Length Constraint Plugin has to be used together with connectivity plugin
or else cells might become fragmented. The applicability of the LengthConstraint and
Connectivity Plugins is limited to 2D simulations.

For more information see
“Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent
remodeling” by Roeland M.H. Merks et al Developmental Biology 289 (2006) 44– 54

Length Constraint Plugin

Length constraint plugin at work

Note: this plugin will not work properly with hexagonal lattice

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Cell Sorting—The Simplest Model
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	CompuCell3D Subtleties
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Replacing CC3DML with Python
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Major Plugins and Steppables Available in CompuCell3D
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121

